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Abstract—Hawkes processes are popular for modeling corre-
lated temporal sequences that exhibit mutual-excitation proper-
ties. Existing approaches such as feature-enriched processes or
variations of Multivariate Hawkes processes either fail to describe
the exact mutual influence between sequences or become com-
putational inhibitive in most real-world applications involving
large dimensions. Incorporating additional geometric structure
in the form of graphs into Hawkes processes is an effective and
efficient way for improving model prediction accuracy. In this
paper, we propose the Geometric Hawkes Process (GHP) model
to better correlate individual processes, by integrating Hawkes
processes and a graph convolutional recurrent neural network.
The deep network structure is computational efficient since it
requires constant parameters that are independent of the graph
size. The experiment results on real-world data show that our
framework outperforms recent state-of-art methods.

Index Terms—Hawkes process, graph convolutional networks,
temporal events.

INTRODUCTION

Hawkes processes, which are capable of modeling temporal
events that exhibit self-exciting properties, have been widely
applied in various applications such as supporting decision
making in smart health [1], inferring Granger causality [2],
and predicting recurrent user behaviors [3], [4], [5]. Generally,
Hawkes processes are useful for modeling a collection of
correlated event sequences such as earthquakes at N locations
or the diffusion of M infectious diseases among a group of N
people. For example, in analyzing on-line user behaviors such
as visiting websites, recent approaches such as [6] treat the
recurrent events of each user-item pair as an one-dimensional
Hawkes process, and assume the parameters of all processes
have a low-rank structure. However, methods that typically
treat each process independently would fail to achieve good
performance when there are insufficient observations for each
process.

Multivariate Hawkes processes [7] are suitable for modeling
multiple correlated sequences, where the occurrence of an
event in one sequence may influence the occurrence of new
events in another. For example, in social event analysis, the
events of an individual user can be modeled as an one-
dimensional Hawkes process and events in a network can be
modeled as a Multivariate Hawkes process [8], [9], [10], which
captures the correlations of both endogenous and exogenous
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event intensities. Extensive studies [11], [12], [13], [2] have
focused on estimating the excitation matrix of multivariate pro-
cesses for different inference tasks. However, those approaches
are either unable to accurately capture the mutual influence
between processes or become computationally prohibitive in
most real-world events involving large dimensions [13], [14].

Incorporating geometric structure in the form of graphs
into Hawkes processes is an effective and efficient way for
improving model prediction accuracy. In many real world
applications, correlations between different Hawkes processes
can be encoded by a graph. For example, in modeling the
sequences of user-item interactions, the similarity of users and
items can be represented by a user graph and an item graph,
respectively. Such additional graph information can be used
to impose smoothness priors on the parameters such as the
base intensities of each individual process. Recently, geometric
deep learning [15], [16], [17], [18] are promising techniques
that can learn meaningful representations for geometric struc-
ture data such as graphs and have been successfully applied
in various applications such as matrix completion.

In this paper, we propose a novel Geometric Hawkes Pro-
cess (GHP) model by integrating geometric deep learning into
Hawkes processes, which aims to efficiently capture mean-
ingful patterns in a large collection of correlated sequences
of recurrent events. Specifically, each sequence is modeled
as a Hawkes process and the proximities between different
processes are encoded in a graph. A novel convolutional and
recurrent neural network is adopted to extract local meaningful
patterns from the graph. The learned meaningful embed-
dings are then used to generate parameters such as the base
intensities that characterize Hawkes processes. Comparing
to traditional methods, our GHP correlates each individual
Hawkes process effectively through graph embedding and it
is computational efficient since the deep network structure
requires constant parameters that are independent of the graph
size. To the best of our knowledge, our GHP model is the
first one to learn Hawkes processes with geometric deep
learning. We also present the detail design of the single-graph
and multi-graph cases for our Geometric Hawkes Process
(GHP) model. Extensive experiments on real-world datasets
demonstrate the predicting performance improvements of our
model in comparison with the state of the art.

RELATED WORK

Variations of Hawkes processes have been proposed for
modeling correlated sequences. For example, the work by
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Zhou et al. [3] uses a multi-dimensional Hawkes process
to learn the social interactivity in a sparse low-rank net-
work. The work by Farajtabar et al. [8] uses a Multivariate
Hawkes process to model social events, which can capture both
endogenous and exogenous event intensities. For modeling
collections of user-item interactions, Du et al. [6] assume
that sequences of all user-item pairs are independent and
the coefficients of all these point processes have low rank
structure. A co-evolutionary latent feature process [19] has
been further proposed to construct interdependent Hawkes
processes by taking advantage of additional features such as
user features, item features, and interaction features between
users and items. Those features are globally embedded to
Hawkes processes. However, those techniques do not fully
exploit the local geometric structures of different processes
in the form of graphs.

Recently, geometric deep learning becomes promising be-
cause the convolutional framework can be applied on non-
Euclidean data, e.g, graphs, to extract important features. Some
studies such as [20] focus on the vertex domain. However,
it’s hard to define an appropriate neighbor for each vertex
and the extracted features sometimes are not representative
especially on high dimensional data structure. Another way
is to formulate graph convolutional on spectral domain [15],
[16], [17], [18], which is the key concept underlying our work.

The first version of Graph Convolutional Network
(GCN) [15] contains n convolutional kernel parameters, which
is not only computationally prohibitive but also lacks spatial
localization. To solve these problems, ChebyNet [16] uses
Chebyshev polynomial localized filters to replace the diag-
onal matrix, which reduces the computation complexity from
O(n2) to O(n). Based on this type of framework, a lot of
studies [17], [18] apply GCN to several specific tasks such as
text classification, traffic forecasting, and matrix completion.
The most closest ones to ours are the applications on matrix
completion. However, their work mainly focus on modeling
two dimensional data in the from of a M by N matrix without
considering temporal dynamics.

MODEL

In this section, we introduce our Geometric Hawkes Process
model. We first introduce the background of Hawkes processes
and geometric deep learning, and then present the geometric
Hawkes processes. We list key notations in Table I.

Background on Hawkes Processes
A univariate Hawkes process is a self-exiting temporal

point process and the realization of the process consists of
a list of discrete temporal events T = {ti}ni=1. It is suitable
for modeling the mutual excitation between events such as
the occurrences of earthquakes at a particular location. The
conditional intensity function that characterizes a Hawkes
process is defined as:

λ(t) = η + α
∑
ti∈Tt

κ(t− ti), (1)

where κ(t) is a kernel function that captures temporal
dependencies, η ≥ 0 is the baseline intensity that captures

TABLE I
KEY NOTATIONS.

Variable Description

Gr, Gc row graph and column graph
m,n number of nodes in Gr, Gc

u, i the u− th and i− th node
T a list of discrete temporal events
O observed sequences of all vertices
P mini-batch vertices size
ti i-th event in T
λ(t) Hawkes process intensity function
λ(u)(t) Hawkes process intensity for node u
λ(u,i)(t) Hawkes process intensity for node pair (u, i)
κ(t) kernel function in Hawkes process

a, b, c, p, q parameters in different kernels
η base intensity in Hawkes process
α self-exciting coefficient in Hawkes process
hu node u’s entry of base intensity vector
au node u’s entry of self-exciting coefficient vector
Hu,i node pair (u, i)’s entry of base intensity matrix
Au,i node pair (u, i)’s entry of self-exciting coefficient matrix
L Laplacian matrix of graph
D degree matrix of graph
W adjacency matrix of graph
Λ diagonal eigenvalue matrix
λl l-th eigenvalue in Λ
Γ total time in all the sequences
Λ̃ scaled eigenvalues in interval [−1, 1]

L̃ rescaled Laplacian w.r.t. Λ̃
K total degrees of Chebyshev polynomial basis
Tk k-th degree of Chebyshev polynomial basis
θ polynomial coefficients in single GCN
θk k-th polynomial coefficient in θ
Θ polynomial coefficients in multi GCN
x single channel input [h;a] of single-graph GHP
X single channel input [H;A] of multi-graph GHP
C,C′ channels of input and output
ρ, γ, β trade-off factors for constraints
ζ parameters in LSTM network
xθ,ζ parameters in single-graph GHP
xθ,ζ

(T ) the T -th step of xθ,ζ in optimization
XΘ,ζ parameters in multi-graph GHP
XΘ,ζ

(T ) the T -th step of XΘ,ζ
(T ) in optimization

the long-term incentive to generate events, α ≥ 0 is the
coefficient that scales the influence of each previous event,
and Tt = {ti|ti < t}ni=1 denotes the history up to but not
including time t.

Different types of parametric kernels can be used to capture
certain forms of temporal dependencies for Hawkes process.
For example, zero kernel assumes no decay with respect to
time and the intensity with zero kernel indicates a Poisson
process. A linear kernel assumes constant rate of decay with
respect to time. Note that an intensity function using a linear
kernel can be updated more efficiently to incorporate new
events based on the accumulated value of previous events.
Others complex kernels such as exponential and Rayleigh
kernels assume different degrees of time decay. The specific
forms of kernel functions are listed as following:

Zero Hawkes Kernel (Zero()):

κ(t) = Zero() = 0, (2)
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Linear (Linear(a,b)):

κ(t) = Linear(a, b) = a(1− b

a
t) (3)

Exponential (EXP(a, b)): The exponential kernel, which is
the most widely adopted by Hawkes process, is defined as:

κ(t) = EXP (a, b) = ae−bt. (4)

Power-Law (PWL(a, c, p): The power-low kernel is usually
used for modeling a slower rate of decay than exponen-
tial [21]:

κ(t) = PWL(a, c, p) =
a

(t+ c)p
. (5)

Tsallis Q-Exponential (Qexp(a, q)): The Tsallis Q-
exponential kernel is a power transform along the shape
parameter q between exponential and power-law kernels. It
models the decay in a more hybrid way [22]:

κ(t)=Qexp(a, q)=


ae−t, q = 1

a[1 + (q − 1)t]
1

1−q, q 6= 0 and 1+(1−q)t > 0

0, q 6= 0 and 1+(1−q)t ≤ 0.
(6)

Rayleigh (Ray(a, b)): The Rayleigh kernel has been used
for modeling a non-monotonically decaying effect [23]:

κ(t) = Ray(a, b) = ate−bt2 (7)

Generally in real world applications, we would like to model
a collection of correlated event sequences such as earthquakes
at N locations. Intuitively, each of the N sequences can be
modeled as a self-exciting Hawkes process:

λu(t) = hu + au

∑
tuj ∈T

u
t

κ(t− tuj ), (8)

where u = 1, ..., N is the index of sequences such as uth

location, h and a are both vectors of size N and their uth

entries represent the non-negative base intensity and the self-
exciting coefficient for uth process respectively. The sequence
T u
t = {tuj |tuj < t}nj=1 denotes the set of historic events of uth

process up to but not including time t.
For events involving a pair of entities such as the interaction

events between M users and N items (e.g., various infectious
diseases among a group of people), the occurrences of inter-
action events between user u and item i can be modeled as
following:

λ(u,i)(t) = Hu,i +Au,i

∑
t
u,i
j ∈T

u,i
t

κ(t− tu,ij ), (9)

whereH denotes an m×n matrix with the (u, i)th entry equal
to the non-negative base intensity for pair (u, i), A denotes an
m×n matrix with the (u, i)th entry equal to the self-exciting
coefficient for pair (u, i), and the sequence T u,i

t = {tu,ij |t
u,i
j <

t}nj=1 denotes the set of historic events of pair (u, i) up to but
not including time t.

However, treating each process independently would fail to
achieve good performance when there are insufficient obser-
vations for each process. Incorporating correlations between

processes such as location proximities and user/item similari-
ties can improve the model prediction accuracy. The proximity
between multiple Hawkes processes can be represented as an
undirected weighted graph such as a proximity network of
locations, a social network of users, and a network encoding
item similarities.

Background on Geometric Deep Learning

Formally, an undirected weighted graph is denoted as G =
(V,E,W ), where V is a finite set of |V | = n vertices, E
is the set of edges and W ∈ Rn×n is the adjacency matrix
with entries Wij > 0 if (i, j) ∈ E. For each graph, a Laplacian
matrix, which is an n×n symmetric positive-semidefinite ma-
trix, can be constructed to reflect useful properties of a graph.
Usually, the graph Laplacian is constructed as three different
forms, the combinatorial Laplacianeq. (10), the random walk
normalized Laplacianeq. (11), and the symmetric normalized
Laplacianeq. (12):

Lc = D −W, (10)

Lrw = D−1Lc (11)

Lsys = D−1/2LcD−1/2 = In −D−1/2WD−1/2, (12)

where D ∈ Rn×n is the degree matrix with Dii =
∑

j Wij and
In is the identity matrix. The symmetric normalized Laplacian
is one of the most widely used graph Laplacian matrices. In
our work, we adapt L = Lsys as the graph Laplacian.

Graph Convolution Network (GCN): Graph convolution is
typically formulated in the spectral domain through graph
Fourier transform [24]. Specifically, a graph Laplacian L
admits a spectral eigendecomposition of the form L = UΛU>,
where U = [u0, ..., un−1] ∈ Rn×n is the orthonormal matrix
and is the complete set of the orthonnormal eigenvectors
{ul}n−1

l=0 ∈ Rn, and Λ = diag([λ0, ..., λn−1]) ∈ Rn×n is the
diagonal matrix with the associated ordered real nonnegative
eigenvalues {λl}n−1

l=0 . In particular, eigenvectors are known as
the Fourier atoms in classical harmonic analysis and eigen-
values are usually interpreted as the frequencies of the graph.
Given a function x = (x0, ..., xn−1)> ∈ Rn on the vertices of
the graph, the graph Fourier transform on graph G is defined
as x̂ = (x̂(λ0), ..., x̂(λn−1)) = U>x ∈ Rn and its inverse
is x = U x̂ [25]. Thus, the spectral convolutional of function
x and convolutional kernel function y on graph G is given
by [15]:

(x ? y)G = U · diag([ŷ(λ0), ..., ŷ(λn−1)]) · U>x, (13)

where � is the element-wise Hadamard product. It is worth
mentioning that convolutions are by definition linear operators
that diagonalize in the spectral domain, according to the
definition of Discrete Fourier Transform and the Convolu-
tion Theorem [24]. Thus, a GCN layer can be defined as
xoutput = σ((x?y)G), where diag([ŷ(λ0), ..., ŷ(λn−1)]) rep-
resents parameters of learnable filters in the spectral domain,
and σ denotes the activation function (e.g. ReLU) which is
applied on the vertex-wise function values.

In order to reduce the computational complexity and the
number of the parameters, as well as adding localization which
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is common in graph signal processing [26], a polynomial filter
was introduced by [16]. Thus, the GCN layer with one filter
has the following forms: xoutput = σ(

∑K−1
k=0 θkL

kx), where
θ = {θk}K−1

k=0 is a vector of polynomial coefficients for such a
filter and the number of parameters is K. Note that the formula
involves only the computation of the Laplacian L without the
computation of its decomposition of U . Specifically, the filter
can be approximated by the Chebyshev polynomial basis Tk
of degree k [26], where Tk(λ̃l) = 2λ̃lTk−1(λ̃l)− Tk−2(λ̃l) is
defined in a recursive way with T0 = 1 and T1 = λ̃l. Thus,
the GCN layer with one filter becomes [16]:

xoutput = σ(

K−1∑
k=0

θkTk(L̃)x), (14)

where L̃ = 2L/λmax − In is the rescaled Laplacian with
scaled eigenvalues Λ̃ = 2Λ/λmax− In in the interval [−1, 1].

By applying kernel polynomial localization, the computa-
tional complexity becomes O(n) rather than O(n2) [16], as
we don’t need to do eigendecomposition. Also, the parameter
number is only K rather than n, and the convolutional kernel
with spatial localization will benefit local feature extraction.
There are some simplified variants of this filter that also
achieve good performance on classification tasks [17]. For
example, assuming K = 2 and λmax = 2, we can get the
first-order model as:

xoutput = σ(

1∑
k=0

θkTk(L− I)x)

= σ((θ0 − θ1D
−1/2WD−1/2)x). (15)

Besides, by setting the parameter of the zero-order term and
the first-order term to be specific forms θ = θ0 = −θ1, we
have the following single parameter model which limits the
number of parameter per layers to avoid over-fitting:

xoutput = σ(θ(I +D−1/2WD−1/2)x), (16)

A even more simplified approximation model can be obtained
through a re-normalization trick [17]:

xoutput = σ(θD̃−1/2W̃ D̃−1/2x). (17)

where W̃ = I + W , D̃ii =
∑

j W̃ij , and I +

D−1/2WD−1/2 ≈ D̃−1/2W̃ D̃−1/2.
GCN with Multi-graph (Multi-GCN): According to the def-

inition of multidimensional Fourier Transform, Graph Fourier
Transform and GCN layers can be extended to multi-graph
version [27], [18]. Given two scaled graph Laplacian (re-
ferred to single-graph convolutional layer) Lr ∈ Rm×m and
Lc ∈ Rn×n with m vertices on the row graph Gr and n
vertices on the column graph Gc, a multi-GCN layer with one
filter is defined as [18]:

Xoutput = σ(

K−1∑
k=0

K−1∑
k′=0

θkk′Tk(L̃r)XTk′(L̃c)), (18)

where function X ∈ Rm×n is two dimensional and such filter
is parameterized by a K×K matrix of polynomial coefficients
Θ = (θkk′).

Generalized GCN Layers: More generally, considering the
computation effectiveness of convolution, we give the fol-
lowing generalized form of GCN layers, which is an high
performance GCN layer referring to [28] and convolution
implementation in Caffe [29]. Given C input channels of
{xc}Cc=1 (a matrix of size m × C) and C ′ output channels

(output feature map size or the number of filters), the single-
GCN layer has the generalized form:

xc′output
= σ(

C∑
c=1

K−1∑
k=0

θkc,c′Tk(L̃)xc). (19)

where c′ = 1, ..., C ′.
Similarly, this can also be applied to multi-GCN layer.

Given C input channels of {Xc}Cc=1 (a tensor of size m ×
n× C) and C ′ output channels, the multi-GCN layer has the
generalized form:

Xc′output
= σ(

C∑
c=1

K−1∑
k=0

K−1∑
k′=0

θkk′c,c′Tk(L̃r)XcTk′(L̃c)). (20)

It is straightforward to expand the eqs. (15) to (17) to the
generalized multi-GCN layer version. For example, for re-
normalization trick model eq. (17):

Xc′output
= σ(

C∑
c=1

θc,c′D̃
−1/2
r W̃rD̃

−1/2
r XcD̃

−1/2
c W̃cD̃

−1/2
c ),

(21)

where Θ = (θc,c′) is the convolutional filters.
Integration of GCN and RNN: Furthermore, a GCN network

coupled with a RNN network can progressively reconstruct the
parameters and it has demonstrated to be highly efficient [18].
Specifically, the input of the GCN network is the original
matrix X(0). The output of the GCN network such as C ′

matrices are the input to a RNN network such as LSTM [30].
Then, the output of the RNN network are the input to a fully
connected layer to calculate the changes dX of the input
matrix X . After several iterations (e.g. T steps), the predicted
value becomes X(T ) = X(T−1) + dX(T−1).

Our Geometric Hawkes Processes (GHP)

We propose a novel Geometric Hawkes Process (GHP)
model by integrating the geometric deep learning into Hawkes
processes, which aims to efficiently capture meaningful pat-
terns in a large collection of correlated sequences of recur-
rent events. In our framework, each sequence is modeled
as a Hawkes process and the proximities between different
processes are encoded in graphs. Specifically, we propose
two types of GHP: single-graph GHP and multi-graph GHP.
Single-graph GHP is particularly useful for modeling se-
quences with one type of graph such as modeling earthquakes
at N locations with a proximity network of locations. Multi-
graph GHP is particularly useful for modeling sequences with
multiple graphs such as modeling the diffusion of various
infectious diseases among a group of people, where the re-
lationship of people and diseases can be represented by a user
graph and an item graph, respectively. The learned meaningful
embeddings from graphs are then used to generate parameters
such as the base intensities that characterize Hawkes processes.

Specifically, the parameters of single-graph GHP are h, a
as described in eq. (8) and they are functions defined on a
graph, e.g., a user graph. Similarly, the parameters of multi-
graph GHP are H and A as described in eq. (9), and they are
functions defined on multiple graphs, e.g., a user graph and
an item graph. The parameters are random initialized as x or
X in equations eq. (14) and eq. (18) respectively, and will
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be optimized in deep geometric learning. The loss function
is defined as the log-likelihood of observing the sequences of
events. Formally, based on the survival analysis theory [31],
the likelihood of observing a sequence of events T = {ti}ni=1

is
∏

ti∈T λ(ti) · exp(−
∫ Γ

0
λ(τ)d(τ)), where Γ is the total

observation time. We present the details for the two types of
GHP as the following.

Single-graph GHP: Specifically, for a collection of Hawkes
processes according to eq. (8) and eq. (14), let T u be the set
of events induced by vertex u = 1, ...,m. The log-likelihood
of observing each sequence T u is:

L(T u | xθ,ζ(T )) =
∑

tuj ∈T
u

log(x(T )
u Φu

j )− x(T )
u Ψu, (22)

where:

x(T )
u =(h(u)(T ),a(u)(T )),

Φu
j =(1,

∑
tu
k
<tuj

κ(tuj − tuk))>,

Ψu =(Γ,
∑

tuj ∈T
u

∫ Γ

tuj

κ(t− tuj )dt)>. (23)

The feature vector Φu
j and the integral Ψu can be pre-

calculated given certain forms of kernels κ(t). The formulas
for zero kernel and linear kernel functions are straightforward.
Since the constant scale parameter can be merged into the
Hawkes self-exiting coefficient α (with matrix form a(u)(T )

and A(u, i)(T )) in eqs. (1), (8) and (9), we set a = 1 in
eqs. (3) to (7). When adopting zero kernels, the second term
of the feature vector Φu

j and the integral Ψu becomes zero,
by integrating eq. (2) into eq. (23):

Φu
j =(1, 0)>,

Ψu =(Γ, 0)>, (24)

When adopting linear kernels, the vectors can be computed
by integrating eq. (3) into eq. (23):

Φu
j =(1,

∑
tu
k
<tuj

[1− b(tuj − tuk)])>,

Ψu =(Γ,
∑

tuj ∈T
u

[
b

2
(Γ− tuj )2 − (Γ− tuj )])>, (25)

For exponential kernels, the vectors can be computed by
integrating eq. (4) into eq. (23):

Φu
j =(1,

∑
tu
k
<tuj

e−b(tuj −tuk ))>,

Ψu =(Γ,
∑

tuj ∈T
u

1

b
(1− e−b(Γ−tuj )))>, (26)

For power-law kernels, the vectors can be computed by
integrating eq. (5) into eq. (23):

Φu
j =(1,

∑
tu
k
<tuj

1

(tuj − tuk + c)p
)>,

Ψu =(Γ,
∑

tuj ∈T
u

1

p− 1
[c1−p − (Γ− tuj + c)1−p])>, (27)

For Tsallis Q-exponential kernels with 1 < q < 2, the
vectors can be computed by integrating integrating eq. (6) into
eq. (23):

Φu
j =(1,

∑
tu
k
<tuj

[1 + (q − 1)(tuj − tuk)]
1

1−q )>,

Ψu =(Γ,
∑

tuj ∈T
u

1

2− q {1− [1 + (q − 1)(Γ− tuj )]
2−q
1−q })>, (28)

For Rayleigh kernels, the vectors can be computed by
integrating integrating eq. (7) into eq. (23)

Φu
j =(1,

∑
tu
k
<tuj

(tuj − tuk)e−b(tuj −tuk )2)>,

Ψu =(Γ,
∑

tuj ∈T
u

1

2b
(1− e−b(Γ−tuj )2))>, (29)

Algorithm 1: Algorithm for Learning single-graph GHP
Input: All the training events O = {T u}u; parameters ρ,

γ, β; {xc = [hc;ac]}Cc=1

Output: The coefficients of Hawkes processes {x(T )
c }Cc=1

begin
Initialize {x(0)

c }Cc=1.
for t← 0 to T do

Forward Propagation:
1. Apply one single-GCN layer eq. (19) on
{x(t)

c }Cc=1 producing C ′ output matrix
{x(t)

c′output
}C′c′=1

2. Apply LSTM with a fully connected layer on
the output matrix {x(t)

c′output
}C′c′=1 producing

small incremental update {dx(0)
c }Cc=1

3. Update {x(t+1)
c ← x

(t)
c + dx(t)

c }Cc=1

Back Propagation:
1. Clip Value ({x(t+1)

c }Cc=1)
2. Apply Adam stochastic optimization algorithm
to optimize eq. (30) and update weights θ, ζ

end
Output {x(T )

c }Cc=1 to calculating Hawkes intensity by
eq. (8).

end

It is worth mentioning that the notation xθ,ζ(T ) emphasize
the matrix depends on the parameters of GCN (polynomial
coefficients θ) and those of the LSTM network (denote as ζ)
after T steps. As a result, the log-likelihood of observing all
vertices’ sequences O = {T u}u is a summation of terms by
L(O) =

∑
T u∈O L(T u). Also, we want the variables h and

a to be faithful to the graph structure G with m vertices and
the corresponding graph Laplacian Lm×m. Thus, we can add
the graph regularizer h(xθ,ζ) = ρ{tr(h>Lh) + tr(a>La)}
and the squared Frobenius norm g(xθ,ζ) = γ‖h‖2F + β‖a‖2F
as [32]. Finally, we can obtain h and a by minimizing the
following objective function:

OPT =min
θ,ζ
− 1

|O|
∑
T u∈O

L(T u |xθ,ζ(T ))+h(xθ,ζ
(T ))+g(xθ,ζ

(T ))

s.t. xθ,ζ
(T ) ≥ 0, (30)

where xθ,ζ = [h;a], and ρ γ, β control the trade-off between
the constrains. After the parameters converging to optimal, we
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can directly use x and eq. (8) to compute the intensity and
make predictions.

Multi-graph GHP: Similarly, we can give the objective
function of multi-graph GHP. According to eq. (9) and
eq. (18), let T u,i be the set of events induced between vertex
u = 1, ...,m and vertex i = 1, ..., n. The log-likelihood of
observing each sequence T u,i is:

L(T u,i |XΘ,ζ
(T )) =

∑
t
u,i
j ∈T

u,i

log(X
(T )
u,i Φu,i

j )−X(T )
u,i Ψu,i,

(31)

where:

X
(T )
u,i =(H(u, i)(T ),A(u, i)(T )),

Φu,i
j =(1,

∑
t
u,i
k

<t
u,i
j

κ(tu,ij − t
u,i
k ))>,

Ψu,i =(Γ,
∑

t
u,i
j ∈T

u,i

∫ Γ

t
u,i
j

κ(t− tu,ij )dt)>. (32)

Note that the feature vector Φu,i
j and the integral Ψu,i can be

calculated in a way similar to eq. (23). Thus, we omitted the
closed forms of different kernels.

In multi-graph case, the notation XΘ,ζ
(T ) emphasize the

matrix depends on the parameters of multi-GCN (polynomial
coefficients Θ) and those of the LSTM network (denote as
ζ) after T steps. Similarly, the log-likelihood of observing
all vertices’ sequences O = {T u,i}u,i is a summation of
terms by L(O) =

∑
T u,i∈O L(T u,i). Given the row graph

structure Gr with m vertices and the column graph structure
Gc with n vertices, the corresponding graph Laplacian are
Lr ∈ Rm×m and Lc ∈ Rn×n. Thus, we can add the
multi-graph regularizers as h̃(XΘ,ζ) = ρ{tr(H>LrH) +
tr(HLcH

>) + tr(A>LrA) + tr(ALcA
>)} [33]. It is worth

mentioning that two matrix with m×n dimension contain too
many parameters. Usually, a lot of points’ attributes can be
categorized into a limited number of types for the real world
data. So, we assume H and A have low-rank structures, and
we can add the nuclear norm g̃(XΘ,ζ) = γ‖H‖∗ + β‖A‖∗
as [6], which is frequently used as a convex surrogate penalty
term for matrix rank. Finally, we can obtain H and A by
minimizing the following objective function:

OPT =min
Θ,ζ
− 1

|O|
∑
T u,i∈O

L(T u,i|XΘ,ζ
(T ))+h̃(XΘ,ζ

(T ))+g̃(XΘ,ζ
(T ))

s.t. XΘ,ζ
(T ) ≥ 0, (33)

where XΘ,ζ = [H;A], and ρ γ, β control the trade-off
between the constrains. After the parameters converging to
optimal, we can directly use X and eq. (9) to compute the
intensity and make predictions.

Learning with Clipping: We can use several stochastic
optimization algorithms such as SGD and Adam [34] to
solve the log-likelihood with regularizers. However, as Hawkes
processes have non-negative parameters, the objective func-
tion should be optimized under such non-negative constraints
eqs. (30) and (33). Since it is the inequality constraints,
directly solving it by adding Lagrange multiplier or Kuhn-
Tucker method [35] will introduce the Complementary Slack-
ness Conditions, which makes it more complex. To enforce the
non-negative constraints on the objective function, we clip the
value to lie within a compact space after each temporal step
t = 0, ..., T and make the lower bound greater than zero. We

present the following learning algorithms 1 and 2 for single-
graph and multi-graph GHP, respectively.

Algorithm 2: Algorithm for Learning multi-graph GHP

Input: All the training events O = {T u,i}u,i; parameters
ρ, γ, β; {Xc = [Hc;Ac]}Cc=1

Output: The coefficients of Hawkes processes
{X(T )

c }Cc=1

begin
Initialize {X(0)

c }Cc=1.
for t← 0 to T do

Forward Propagation:
1. Apply multi-GCN layer eq. (20) on {X(t)

c }Cc=1

producing C ′ output matrix {X(t)
c′output

}C′c′=1

2. Apply LSTM with a fully connected layer on
the output matrix {X(t)

c′output
}C′c′=1 producing

small incremental update {dX(0)
c }Cc=1

3. Update {X(t+1)
c ←X(t)

c + dX(t)
c }Cc=1

Back Propagation:
1. Clip Value ({X(t+1)

c }Cc=1)
2. Apply Adam stochastic optimization algorithm
to optimize eq. (33) and update weights Θ, ζ

end
Output {X(T )

c }Cc=1 to calculating Hawkes intensity
by eq. (9).

end

Computational Complexity: By applying polynomial local-
ization, the single-GCN eq. (14) reaches O(n) [16] rather than
using eq. (18) with complexity O(n2), where n is the number
of vertices of the graph. Thus, the multi-GCN has the complex-
ity of O(mn) [18] considering C,C ′,K � min(m,n). Also,
the learning complexity of LSTM network is O(W ), where
the number of parametersW = 4n2

c+4ncni+ncno+3nc [36],
and the number of memory units, input units and output
units are equal to the number of output feature map size
of the GCN nc = ni = nc = C ′ in our network. As a
result, such single-GCN + RNN network has the complexity
of O(n + n · C ′ · C ′) = O(n) per time step and the multi-
graph one has the similar complexity of O(mn) per time step.
It is worth mentioning that these are computed globally. To
make it more efficient, we can also address several mini-batch
with P samples from n or mn, which makes the algorithm
independent of the graph size and achieve O(P ) complexity.

EXPERIMENT AND RESULTS

In this section, we introduce the experiments.

Experimental Settings and Evaluation Metrics

We evaluate our model on three real world datasets which
contain temporal interactions between a set of users and a set
of items. The details are shown in table II. Specifically, the
IPTV dataset [2] contains 7100 users and 436 TV programs
with 1420 program features such as genres and countries.
For each user-item pair, it contains a sequence of viewing
time during the period of January to November 2012. The
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Fig. 1. Testing loss with respect to different graph inputs, different number of neighbors, and architectures on IPTV data.

TABLE II
DATASET DESCRIPTION.

Dataset User Item Event Pair Item-Feature Time

IPTV 7100 436 2.4M 4726 1420 8040
Yelp 100 17K 35K 20246 823 44640

Reddit 1000 1403 10K 2053 35 4090

Yelp1 dataset is available from Yelp dataset challenge. After
pre-processing, it records the time of writing reviews for
17k businesses by 100 users during a period of 11 years.
The Reddit2 dataset contains the time of posting discussions
between random selected 1000 users and 1403 threads in
January 2014.

As suggested in [18], a user or item graph can be con-
structed as an unweighted k-nearest neighbor graph in the
space of features such as TV features. In cases where user
and item features are not available, we can construct a two-
dimensional user-item matrix from the time sequences where
each entry indicates the total count of user-item interactions,
and apply SVD to get a latent feature vector for each use or
item. In cases where user and item content features (e.g., TV
genres and countries) are available, we investigate the effect
of building a KNN graph with different integration methods
of content features and the SVD features obtained through
user-item matrix. We can model these datasets using either
single-graph GHP or multi-graph GHP. For the first case, the
parameters are regraded as vector functions on a graph (e.g.,
user graph) and the values of each dimension (e.g., item index)
are regraded as different channels. For the second case, the
parameters are regraded as scalar functions on both user and
item graphs and the size of the input channel is one.

There are three metrics to evaluate the performance of the
model. In the experiments, we use the events before time T ·p
as the training data, and the rest of them as testing data, where
T is the length of the total time, and p = 0.76 is the proportion
where we split the data.

Test Loss: It is defined as in the objective function eqs. (30)
and (33) with fixed coefficients of Hawkes processes learned

1https://www.yelp.com/dataset/challenge
2https://dynamics.cs.washington.edu/data.html

using events in the training set.
Item Relevance: Given the history T = {ti}ni=1 of a specific

user u, we calculate the survival rates for all the items at each
testing time t, that is Si(t) = exp(−

∫ t

tin
λi(τ)d(τ)). We then

order all the survivals and compute the rank of the ground-truth
item the user interacts at testing time t. Ideally the ground-truth
item should be ordered at rank one. Following [19], we report
mean average rank (MAR) of all testing cases. A smaller value
of MAR indicates better predictive performance.

Time Prediction Accuracy: Given a specific pair of user u
and the item i, we record the mean absolute error (MAE) of
the next predicted time and the ground truth of testing time t.
The predicted time is calculated by the density of next event
time as f(t) = λ(u,i)(t)S(u,i)(t), and then use the expectation
to predict the next event. Furthermore, we also give the relative
percentage of the prediction error (Err %).

Baseline Methods

Po: Poisson processes are simplified Hawkes processes
without capturing temporal dependencies. The only parameter
to characterize Poisson is the base intensity η, which is a
constant.

Po-T: Poisson-Tensor uses Poisson regression error instead
of RMSE as the loss function when fitting the data. The
intensity are regarded as the number of events in each dis-
cretized time slot [37]. It assumes that the missing values
are not random, and thus simulating the values with Poisson
distribution is more reasonable than with Gaussian. Once we
get the model parameters, there are two ways to simulate the
intensity of test data. One is using the intensity that we have
got only in the last time interval, and the other is using the
average intensity of all the training time intervals. We report
the best performance of these two choices.

LRH: LowRankHawkes is a collection of Hawkes pro-
cesses [6] assuming that all processes are independent and
the parameters are low rank matrices. However, there are no
interactions between different processes.

Coevol: Coevolve is a co-evolutionary latent feature pro-
cess [19] which constructs interdependent Hawkes processes
by embedding user and item features globally into each
process. This method actually combines all events happening
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Fig. 2. Test loss with respect to different combination methods of item
features on IPTV dataset.

before the current event from different processes when fitting
the parameter of each individual process. However, the per-
formance in terms of item relevance may be affected due to
unrelated events. In addition, if no features are used, the model
reduces to a Poisson process.

Compare Ours of Different Parameters

We first investigate the influence of important parameters
in our GHP model by evaluating them using the testing loss.
Specifically, the main parameters are types of graph, k-nearest
neighbor, and the variations of deep learning architectures.
Moreover, we consider different ways of building graphs to
integrate both content features and interaction features, the
type of triggering kernels, and different graph propagation
models.

Single vs Multi-graph: We show the results of testing losses
with multi-graph input compared with only single-graph input,
e.g. only a user graph or an item graph, of IPTV dataset in
fig. 1(a). As we can see, the testing loss with multi-graph input
outperforms that with only single-graph input, which prove
that the graph information is extracted well by the GCN +
LSTM networks. It is worth mentioning that the IPTV dataset
contains 7100 users and 436 TV show items, so using only
the user graph achieves better results than using only the item
graph. Also, the testing loss shows that the less information
inputted, the faster it overfits the data.

Number of K-neighbors: We also investigate the number
K’s effect when constructing the K-nearest neighbor graph. In
fig. 1(b), we present the testing losses of IPTV dataset with
2, 5, 10, 15, 20 -NN graph input of multi-graph GHP model.
The figure demonstrates that give the K in a reasonable range,
we can achieve a stable and accurate estimation of the model.
The results show that k = 10 is the best for IPTV dataset.
In the experiment, we use the same K for both user and item
input graphs. However, we can separately set K for the user
graph and the item graph to make it more flexible. According
to fig. 1(a) and fig. 1(b), our GHP model benefits from the
input graph information and extracts useful features from these
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Fig. 3. Test loss with respect to different kernels on IPTV dataset.

interactions, and thus the model overcomes the isolation of
point process models such as [6].

Variations of Architecture Setting: We compare different
architecture settings of our model and the results are presented
in fig. 1(c). First of all, the RNN structure such as LSTM or
GRU is essential to learn the diffusion process of coefficients.
The LSTM is more effective compared to GRU [38] because
LSTM can remember more historical information. Besides,
the results show that adding more GCN layers enhances the
performance of modeling Hawkes processes, which indicates
that deeper network may extract more useful features. As data
size increases, it is necessary to build deeper architectures.
More extensive studies on the architecture of GCN in different
applications can be found at [17], [18]. In our experiment, we
found the structure of two GCN layers plus one LSTM layer
works best.

Building Item Graph by Integrating Features: In the case
where both item content features (e.g., TV genres and coun-
tries) and user-item interaction exist, we investigate different
combination methods to integrate features to construct the item
KNN graph using IPTV dataset. The KNN graph depends
on the distance between user and item similarities based on
these two type of features. Since the item content features
are quite sparse with high dimension, we first apply some
dimension reduction methods on them to reduce the dimension
of these features to the same dimension k of the item latent
feature obtained through user-item interactions. We adopt three
dimension reduction techniques: Principal Component Analy-
sis (PCA), Auto Encoder(AE), and Multi-dimensional Scaling
(MDS). The experiments show that PCA achieves the best
performance, while MDS is the second and AE becomes the
worst. After normalizing these two types of features, we finally
integrate them to a unified feature vector by six methods:
only item SVD features by factoring user-item interaction;
only item content features; element-wise addition of these two
features; element-wise product of the two; concatenation of the
two that extend the low dimension from k to 2k; and the outer
product which extend the lower dimension from k to k2.

We present the performance of test loss with respect to dif-
ferent combination methods of item features on IPTV dataset
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TABLE III
TEST LOSS WITH RESPECT TO DIFFERENT GRAPH PROPAGATION MODELS ON IPTV DATASET.

Description Propagation Model Test Loss
K = 2 Chebyshev filter eq. (14)

xoutput = σ(
∑K−1

k=0 θkTk(L̃)x)
-9.26e+03

K = 3 Chebyshev filter eq. (14) -7.11e+03
1st-order model eq. (15) xoutput = σ((θ0 − θ1D

−1/2WD−1/2)x) -5.04e+03
Single parameter 1st-order model eq. (16) xoutput = σ(θ(I +D−1/2WD−1/2)x) -3.14e+03

Re-normalization trick eq. (17) xoutput = σ(θD̃−1/2W̃ D̃−1/2x) -2.37e+03
1st-order term only xoutput = σ(θD−1/2WD−1/2x) -9.69e+03

in fig. 2. First of all, adopting the integration of two types
of features is better than only adopting one type of features.
Second, the item content features seem to have better qualities
in representations than SVD collaborative features. At last, it
seems that addition and element-wise product operations of
these two type of features achieve better performance than
others. The redundant and noisy information generated by
concatenation and outer product operations seem to be the
reason leading worse performance.

Effect of Triggering Kernels: We also investigate the effects
of using different triggering kernels of Hawkes processes
such as zero kernels, linear kernels and some other kernels
introduced before eqs. (4) to (7). As shown in fig. 3, the
most widely used exponential kernel seems to capture the
dependence of history events well and achieves the best
performance. Zero kernel is the worst and others are in-
between. Some research indicates that these kernels, which
represent different forms of decay may perform differently
depending on various types of data [23], [4].

Different Graph Propagation Models: We compare the test
loss with different graph propagation models [17] on the IPTV
dataset. The results shown in table III indicated that the first
order term only model and the Chebyshev filter eq. (14) with
K = 2 both achieve comparable performance than other graph
propagation models eqs. (15) to (17). As we increase K, the
number of parameters increases, which may lead to the over-
fitting problem. In our experiments, these graph propagation
models don’t effect the performance too much comparing
with choices of kernel and feature combination methods. This
indicates that the content of the graph seems to be more
important than how it is embedded into the learning under
the framework of graph convolution networks. Based on all
the experiments, we conclude that the graph Laplacian which
depends on the graph construction and the graph convolution
network structures are crucial to the performance of our GHP
model.

Compare with Baselines

We compare our GHP model with some state-of-art base-
lines by evaluating the metrics of item relevance and time
prediction accuracy as shown in table IV. We use multi-graph
GHP model and the results show that our method outperforms
other baseline methods in general. For IPTV and Reddit
datasets, the exception occurs on time prediction of Coevol.
Specifically, the Coevol method uses a weighted summation
of all the events happened before the current event to simulate
one point’s intensity. Therefore, the returning-time prediction

is good since a large number of events are used to simulate
the intensity function. The embedding of auxiliary features
such as TV genres is also helpful in improving prediction
accuracy. However, the item relevance prediction becomes
worse [19] because the parameters of the individual process are
influenced by unrelated processes. Meanwhile, we can see that
the Hawkes process based models, such as our model, Coevol,
and LRH, get better performances when there are sufficient
history events (with nearly 400 events per point for IPTV and
30 events for Reddit) in comparison with the Poisson related
models. For Yelp data, as each point process only has fewer
than 3 events in average, the time prediction is similar among
LRH and Po, which means that the history is not such an
important factor. In this time sparsity case, factorization model
Po-T gets better results than point process based models. For
all three datasets, LRH with low-rank assumption, performs
worse than our GHP that integrates graphs with low rank
assumption. Obviously, integrating graphs can better capture
the correlations between different processes.

TABLE IV
AVERAGE PREDICTION PERFORMANCE COMPARISON ON IPTV, YELP, AND

REDDIT DATASETS.

Datasets Metrics Methods
Our LRH Coevol Po Po-T

IPTV
MAR 1.643 5.175 13.57 173.7 178.7
MAE 361.0 822.1 160.3 993.1 933.6
Err % 5.13 12.27 2.35 14.83 13.89

Yelp
MAR 94.62 116.0 671.2 7778 1738
MAE 499.0 845.7 587.3 850.9 587.1
Err % 14.59 23.71 17.49 23.91 17.48

Reddit
MAR 6.010 49.14 82.44 128.2 85.49
MAE 5367 8476 5323 10314 9155
Err % 14.15 21.50 14.27 26.59 24.09

CONCLUSIONS

In this paper, we present a novel framework that integrates
the graph convolutional recurrent neural network and Hawkes
processes to model temporal events. Our model can be applied
to a collection of correlated temporal sequences of recurrent
events, and it is able to correlate each sequence through
graph embedding. We also present single-graph and multi-
graph settings of our model. Extensive experiments on real-
world datasets demonstrate the performance improvements of
our model in comparison with the state of the art. Future work
includes integrating Hawkes Processes with other different
types of deep neural network structures and extending to other
applications.
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