
Demographic Inference via Knowledge Transfer
in Cross-Domain Recommender Systems

Abstract—User demographics such as age and gender are
very useful in recommender systems for applications such as
personalization services and marketing, but may not always be
available for individual users. Existing approaches can infer
users’ private demographics based on ratings, given labeled
data from users who share demographics. However, such labeled
information is not always available in many e-commerce services,
particularly small online retailers and most media sites, for
which no user registration is required. We introduce a novel
probabilistic matrix factorization model for demographic transfer
that enables knowledge transfer from the source domain, in
which users’ ratings and the corresponding demographics are
available, to the target domain, in which we would like to infer
unknown user demographics from ratings. Our proposed method
is based on two observations: (1) Items from different but related
domains may share the same latent factors such as genres and
styles, and (2) Users who share similar demographics are likely
to prefer similar genres across domains. This approach can align
latent factors across domains that share neither common users
nor common items, associating user demographics with latent
factors in a unified framework. We also develop an iterative
algorithm for model parameter estimation and theoretically
show its convergence. Experiments on cross-domain datasets
demonstrate that the proposed method consistently improves
demographic classification accuracy over existing methods.

Index Terms—Demographic inference, Recommender systems,
Matrix factorization

I. INTRODUCTION

User demographics are important attributes for enriching
online services that include personalization, marketing, and
targeted advertisement. However, demographic information is
not always available for online users, typically because either
they decline to provide it [1], [2] or the online service is
not designed to collect it. Instead, user interactions such as
ratings, clicks, and purchases in recommender systems can
sometimes provide sufficient information to infer user demo-
graphic attributes. For example, a Netflix user’s preference for
family-oriented and occasional children’s movies may indicate
that the user is a parent. Existing attempts [3], [4] suggest
that it is possible to infer user genders based on ratings
with as high as 80% accuracy given labeled data from users
who share demographic information in recommender systems.
However, such labeled user demographic information is not
always available in many e-commerce services, particularly
small online retailers (e.g., an outdoor shopping site) and most
media sites (e.g., Yahoo News), in which no user registration
is required.

It is therefore very useful to transfer knowledge from the
source domain, in which users’ ratings and the corresponding
demographics are available, to the target domain, in which

we would like to predict demographics from ratings. Initial
work in this area includes de-anonymization of movie ratings
datasets [5] by matching rating patterns between the source
domain IMDB database and the target domain Netflix, in
which the user identities are inferred. The success of the
approach is based on the assumption that a subset of common
items is rated by common users in both domains. Other
approaches such as [6] require that different domains have
some auxiliary information such as item content features for
linking and grouping users or items. However, due to privacy
concerns, the sharing of user and item information may be
limited in practice.

Our task is to infer demographics from ratings in a target
domain by transferring the knowledge from a source domain
with both ratings and user demographics. Note that this task
is totally different from traditional transfer learning via user
modeling, since no demographic information in the target
domain is available and no entities (e.g., users, items) can be
linked across domains. Demographic transfer learning under
this scenario is possible based on two observations. First,
when two domains such as movies and books are related,
different items may share the same latent factors such as
genres and styles. For example, the “The Matrix” movie and
the “Neuromancer” book by William Gibson both belong to
the ‘cyberpunk’ science fiction genre. Second, users who share
similar demographics are more likely to prefer similar genres
across domains. For example, multiple studies (e.g., [7], [8])
have identified group-level differences in movie and book
preferences between men and women (e.g., male preference
for action-adventure and sports themes vs. female preference
for relationship-based themes).

Inspired by these observations, we propose a probabilistic
cross-domain matrix factorization model called Transfer Ma-
trix Factorization (TMF), which can effectively transfer the
knowledge of user demographics from the source domain to
the target domain. Traditional matrix factorization approaches
characterize both users and items with latent factors but fail
in cross-domain demographic inference tasks since the latent
factors across different domains are not aligned and there is no
association between demographic labels and latent factors. Our
proposed method is based on the joint matrix factorization of
two user-item rating matrices from different domains with an
important twist: it characterizes a user profile as an integration
of both a group-level profile that captures the preference of
users within the same demographic group, and a personal
profile that captures the personal preference of each user. The
group-level profile is further decomposed into the product



of two components: the user membership of demographic
groups and the association between demographic groups and
latent factors. Since both the latent factors and the association
between demographic groups and latent factors are shared
across domains, the knowledge from the source domain can
be used to improve the demographic inference in the target
domain.

To summarize, the main contributions of our work are:
(1) Our model explores effectively the correlation between
demographics and ratings across different domains that share
neither common users nor common items and infers the
demographics precisely without giving any information in
the target domain. (2) We develop an iterative algorithm for
this optimization and theoretically show its convergence. (3)
Extensive experiments using real-world datasets demonstrate
that our model can achieve higher classification accuracy than
existing methods, regardless of the amounts of labeled users,
the sparsity of ratings, and the difference of demographic
distributions in the source and target domains.

II. RELATED WORK

Private user demographics have been inferred from various
online activities such as friendship on Facebook [9], [10], lin-
guistic features of tweets [11]–[14], reviews [15], and location
check-ins [16]. Other studies have explored the association
between user demographics and ratings in recommender sys-
tems [2]–[4], [17]. Initial attempts (e.g., [3]) have shown that
it is possible to infer the genders of users in recommender
systems based solely on their ratings with as high as 80%
accuracy. Most of the existing work assumes that a small
fraction of labeled data is available from users who are willing
to provide their demographics. However, such information is
limited due to privacy concerns.

To overcome this lack of sufficient labeled data, initial
attempts have explored the association between demographics
and online activities through cross-domain social computing
platforms [18], [19]. Studies including [20] have demonstrated
that it is possible to infer user demographics from search
queries by transferring the knowledge from labeled Facebook
data to unlabeled search engine data. The method maps both
search queries and Facebook ‘Liked’ pages into the same text
categories and transfers the association between demographics
and text categories between two domains. A variety of online
activities such as social connections, temporal access patterns,
and geographic tags [18], [19] have been used to identify users
across different social platforms such as Twitter and Flickr.

Accurate demographic inference in cross-domain recom-
mender systems based only on ratings is challenging due to
the lack of content information such as review text and social
connections. A few attempts have explored user identities
through cross-domain recommender systems, assuming that a
subset of common items are rated by common users in both do-
mains. For example, the work on Netflix de-anonymization [5]
matches rating patterns between Netflix rating data and the
public IMDB database to infer user identities. Traditional ma-
trix factorization based methods [21]–[23] have been used to

explain ratings through latent factors in a single domain. Those
methods seek to map users and items in a low-dimensional
space to capture intrinsic similarities. However, latent factors
are not aligned across different domains.

Transfer learning has been used in cross-domain recom-
mender systems to predict ratings. For example, collective
matrix factorization (CMF) [24] can be applied in cross-
domain recommendation assuming that entities such as users
and items are shared across domains. A recent study [6]
has integrated auxiliary content information, such as user and
item features, to improve recommendation accuracy. Another
group of work has improved rating prediction in domains
where neither items nor users are shared [25]–[30]. Some
representative methods such as [25], [26] are rating genera-
tive models based on the assumption that ratings are drawn
from a shared cluster-level model. Our work focuses on a
different perspective of recommender systems where we would
like to infer private user traits from ratings. The idea of
transferring group-level knowledge is also applied to cross-
domain document categorization [31], [32]. Specifically, these
types of approaches extend previous work [26], [27] with
document class labels and transfer the association between
word clusters and document classes based on nonnegative
matrix factorization. In comparison with document modeling,
our work models each user with both group-level preference
related to demographics and individual preference, which is
more suitable for recommender systems.

Our model is inspired by constrained probabilistic ma-
trix factorization (CPMF) [33] and its extension [34], but
our approach is different in the following ways. First, the
CPMF models user preferences in a single domain with
observed metadata such as demographics, but ours models user
preferences across domains where the associations between
demographics and user latent features are shared and the
demographics of the target domain are unknown. Second, in
CPMF the demographic indicator of a user is assumed to be an
observed binary. However, we generalize this to be the latent
probability of a user belonging to one of the demographic
clusters, which follows a normal distribution.

III. MODEL

In this section, we introduce our TMF model for inferring
demographics from rating matrices in cross-domain recom-
mender systems. The key innovation of our model is that a
user profile is characterized as both a demographic dependent
profile that can be shared across domains and a personal profile
that captures the user’s personal preference in each domain.
We also present an efficient algorithm to optimize the objective
function, together with a rigorous convergence proof.

A. Basic Concept and Notation

Throughout this paper, we denote the real number set and
nonnegative real number set as R and R+, respectively. The
element at the i-th row and j-th column of a matrix M is
denoted by M(ij). Frequently used notation is summarized in
Table I.
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Fig. 1. The graphical model of Transfer Matrix Factorization (TMF).

TABLE I
FREQUENTLY USED NOTATION.

Notation Description
π domain indices, π ∈ {1, 2}

R1, R2 rating matrix in source, target domain
m1, m2 number of users in source, target domain
n1, n2 number of items in source, target domain
Y1, Y2 user personal feature matrix in source, target
V1, V2 item feature matrix in source, target
G1, G2 latent demographic matrix in source, target
G0

1 true demographic indicator matrix in source
W association matrix between

demographics and latent features
σYπ , σVπ variance of Yπ , Vπ
σGπ , σπ variance of Gπ , Rπ
σW variance of W

α, β, γ, λ regularization parameters
Γ,Λ Lagrange multipliers

Given user ratings and demographic labels in the source
domain, our goal is to predict the user demographic labels
from ratings in the target domain. Note that domains share
neither common users nor common items. Specifically, the
source domain rating matrix is denoted by R1 ∈ Rm1×n1 with
m1 users rating on n1 items, and the target rating matrix is
denoted by R2 ∈ Rm2×n2 with m2 users rating on n2 items.
Assume there are a total of c demographic categories in both
domains, e.g., c = 2 for binary categories (e.g., married vs.
not married) and c > 2 for multi-class categories. Let G0

1 ∈
Rm1×c

+ represent the true demographic label indicator matrix
in the source domain. The column of matrix G0

1 indicates the
class membership, that is G0

1(ij)
= 1 if the i-th user is in the

j-th demographic category and G0
1(ij)

= 0 otherwise.

B. Transfer Matrix Factorization (TMF) Model

In traditional Matrix Factorization (MF), the rating matrix
R is approximated with the product of two low-rank matrices:
U ∈ Rm×k that represents the latent user feature matrix, and
V ∈ Rk×n that represents the latent movie feature matrix.

Each entry in R is approximated by the inner product of a
row vector in U and a column vector in V : R ≈ UV .

The key innovation of our model is to associate demo-
graphic information with latent user features as:

Ui = Yi +

∑c
k=1GikWk∑c
k=1Gik

, (1)

where Y ∈ Rm×k is the user personal feature matrix, G ∈
Rm×c is the latent demographic matrix, and W ∈ Rc×k is the
association matrix between demographic categories and latent
user features. In particular, we assume that the association
matrix W can be shared in different but related domains.
Informally, the row of the matrix W models the effect that a
user with a specific demographic label has on the prior mean
of the corresponding feature vector. Therefore, users with
similar demographics will have feature vectors with similar
prior distributions. The final feature vector of user i is obtained
by adding offset Yi to the mean of the prior distribution, which
is important since ratings rely on not only demographics but
also users’ individual preferences, and usually the latter is
much more crucial in predicting ratings. Without Y , the user
feature matrix would only rely on demographics, meaning that,
for example, users of the same gender will give the same
rating score on one movie, and that is unrealistic. Inspired
by the constrained probabilistic matrix factorization [33], our
probabilistic graphic model is shown in Figure 1.

The likelihood of the observed ratings in each domain π ∈
{1, 2} is as follows:

p(Rπ|Yπ, Vπ,W,Gπ, σ2
π) =

mπ∏
i=1

nπ∏
j=1

[N (Rπ(ij)

∣∣∣(Yπ(i·) +

∑c
k=1Gπ(ik)

Wk∑c
k=1Gπ(ik)

)
Vπ(·j) , σ

2
π)]

Iπ(ij) ,

(2)

where N (x|µ, σ2) is the probability density of the normal
distribution with mean µ and variance σ2, and Iij is the
indicator function that is equal to 1 if user i rated movie j
and equal to 0 otherwise. We also regularize all latent vectors
by imposing Gaussian priors as follows: N (Yπ(i·) |0, σ2

Yπ
I),

N (V Tπ(j·)
|0, σ2

Vπ
I), N (Wk|0, σ2

W I), N (G2(i·) |0, σ2
G2

I), and
N (G1(i·) |G0

1(i·)
, σ2
G1

I). Note that G0
1 contains the true demo-

graphic label in the source domain and is the mean of the prior
distribution of G1.

We can obtain the maximum a posteriori (MAP) estimates
of model parameters Yπ , Vπ , Gπ , and W with hyperparameters
such as the prior variance σYπ and the observation variance σπ
kept fixed by minimizing the following sum-of-squared-error
objective function E:

E=
1

2

2∑
π=1

mπ∑
i=1

nπ∑
j=1

Iπ(ij)
[Rπ(ij)

−

(
Yπ(i·)+

∑c
k=1Gπ(ik)

Wk∑c
k=1Gπ(ik)

)
Vπ(·j) ]

2

+

2∑
π=1

λYπ

mπ∑
i=1

‖Yπ(i·)‖
2+

2∑
π=1

λVπ

nπ∑
j=1

‖Vπ(·j)‖
2+λW

c∑
k=1

‖Wk‖2

+ α

m1∑
i=1

‖G1(i·) −G
0
1(i·)
‖2 + γ

m2∑
i=1

‖G2(i·)‖
2, (3)



where regularization parameters λYπ = σ2
π/2σ

2
Yπ

, λVπ =

σ2
π/2σ

2
Vπ

, λW =
∑2
π=1 σ

2
π/2σ

2
W , α = σ2

1/2σ
2
G1

, and γ =
σ2
2/2σ

2
G2

.
Furthermore, since matrices G1 and G2 indicate the prob-

abilities that users belong to demographic classes, we revise
the objective function by adding non-negative constraints to
model parameters. To make it simpler, we minimize the loss
function as follows:

min
Yπ,Vπ,Gπ,W

‖[R1−(Y1+G1W )V1]◦I1‖2+β‖[R2−(Y2+G2W )V2]◦I2‖2

+

2∑
π=1

λYπ‖Yπ‖
2+

2∑
π=1

λVπ‖Vπ‖
2+λW ‖W‖2+α‖G1−G0

1‖2+γ‖G2‖2

s.t.

c∑
j=1

Gπ(ij)
=1, Gπ, Vπ, Yπ,W ≥0, π ∈ {1, 2}, (4)

where ◦ denotes element-wise product and β is the non-
negative trade-off factor controlling the balance between the
number of observations in the source and the target domains.
Since G0

1 contains the true demographic label information
in the source domain, the regularization term enforces the
similarity between G1 and the prior G0

1 in the source domain.
We will then present an efficient algorithm to learn model
parameters Yπ , Vπ , Gπ , and W to minimize the objective
function in Eq. 4. The probability matrix G2 in the target
domain obtained through optimization will be used to predict
user demographic labels. Specifically, the predicted demo-
graphic class label of the i-th user in the target domain is the
index of the category with the largest probability. In addition,
regularization parameters such as λYπ , λVπ , λW , α, β, and γ
provide a flexible way to regularization. To determine these
parameters, we consider a set of reasonable parameter values
for each of them, train the model for each setting, and choose
the ones that perform best on the validation data.

C. Learning Algorithm

We now present the learning algorithm to find the optimal
solution to our optimization problem in Eq. 4, which is
achieved through the following theorem. As we use sparse
matrices in the experiments, we ignore the indicator function
matrix Iπ in the following equations.

Theorem 1. Updating Y1, Y2, V1, V2, G1, G2, W with
eqs. (5) to (9) and normalizing G1, G2 to satisfy the equality
constraints with eq. (10) in each iteration will monotonically
decrease the objective function in eq. (4) until convergence.

Yπ ← Yπ ◦

√
[RπV Tπ −GπWVπV Tπ ]

[Yπ(VπV Tπ + λ)]
, (5)

Vπ ← Vπ ◦

√
[(Yπ +GπW )TRπ]

[((Yπ +GπW )T (Yπ +GπW ) + λ)Vπ]
, (6)

G1 ← G1 ◦

√
[(R1 − Y1V1)V T1 W

T + αG0
1]

[G1(WV1V T1 W
T + α)]

, (7)

G2 ← G2 ◦

√
[(R2 − Y2V2)V T2 W

T ]

[G2(WV2V T2 W
T + γ)]

, (8)

W←W◦[
√
βGT2 (R2V T2 −Y2V2V T2 )+GT1 (R1V T1 −Y1V1V T1 )]

[
√
βGT2 G2WV2V T2 +GT1 G1WV1V T1 +λW ]

,

(9)

Gπ(i·) ←
Gπ(i·)∑c
j=1Gπ(ij)

, (10)

where ◦ denotes element-wise product, [·]
[·] denotes element-

wise division, and
√
· denotes element-wise square root.

Algorithm 1: Transfer Matrix Factorization (TMF) for
Cross-domain Recommender Systems
Input: Source domain rating matrix R1 and true

demographic label matrix G0
1; target domain

rating matrix R2

Output: The demographic probability matrix in the
target domain G2

begin
Initialize the matrix variables as Y1, Y2, V1, V2, W ,
G1, G2 and set parameters α, β, λ and γ. The
initialization method will be detailed in the
experimental section.

for iter ← 1 to maxIter do
1. update Y1, Y2, V1, V2, W , G1, G2 by eqs. (5)
to (9).

2. normalize G1, G2 by eq. (10).
end
Output the matrix G2 containing demographic labels.

end

The proof of Theorem 1 is given in the following theoretical
analysis section and the learning algorithm for the model
optimization is summarized in Algorithm 1.

D. Computational Complexity

We measure the computational complexity for eqs. (5)
to (10) in a similar way as [28], [35]. The computational
complexity for TMF in each iteration is of order 3m1n1k +
cm1k + k2m1 + k2n1 for eq. (5). In general, the latent
dimension k and the number of categories c are much smaller
than the size of rating matrices, that is, k, c � min{m,n}.
Suppose N = max{m,n}, so the computational complexity
is O(N2) in each iteration. Similarly, the computational com-
plexity is O(N2) for eqs. (6) to (9) and is O(N) for eq. (10)
in each iteration. We assume this algorithm needs maxIter
iterations to converge. Therefore, multiplying these orders
by maxIter and then summating all the orders, we have
the overall computational complexity as O(maxIter · N2).
Considering this is the worst case and the matrices are usually
sparse in experiments, these matrix multiplications can be
computed more efficiently in most cases on computers.

E. Theoretical Analysis

In this section, we will prove that the updating rules
described in Theorem 1 will monotonically decrease the
objective function in eq. (4) until convergence.



Proof. We first check the convergence of updating G1 as
described in eq. (7) and eq. (10) when Y1,Y2,V1,V2,W ,G2
are fixed. Following the standard theory of constrained op-
timization, we introduce Lagrangian multipliers and minimize
the Lagrangian function based on optimizing function E in
eq. (4):

L = E + Tr[Γ(G1u
T − vT1 )(G1u

T − vT1 )T ]

+Tr[Λ(G2u
T − vT2 )(G2u

T − vT2 )T ],
(11)

where Γ ∈ Rm1×m1 and Λ ∈ Rm2×m2 are the Lagrange
multipliers for the two constraints. All elements in vectors
u ∈ R1×c, v1 ∈ R1×m1 , and v2 ∈ R1×m2 are equal to
one. Then we derive the updating rule for G1 using the KKT
complementarity condition for the constraints on G1, that is:

∇G1L ◦G1 ={−2[R1−(Y1+G1W )V1]V T1 W
T } ◦G1

+[2α(G1−G0
1)+2Γ(G1u

T−vT1 )u] ◦G1 =0.
(12)

Specifically, the role of Γ here is to drive the solutions to
satisfy the constraint that the sum of the values in each row
of G1 is one. A similar normalization technique is presented
by Zhuang et al. [31]. The effects of eq. (7) and eq. (10) are
approximately equivalent to eq. (13) in terms of convergence,
which is proven in Theorem 2. Similarly, the convergence of
the updating rules for Y1, Y2, V1, V2, W , and G2 can be
proved according to Theorem 2 and the Multiplicative Update
Rules [36]. Each update step in Algorithm 1 will not increase
eq. (4) and the objective is lower bounded by zero, which
guarantees the convergence.

Theorem 2. The Lagrangian function L in eq. (11) is mono-
tonically decreasing (non-increasing) under the update rule
eq. (13).

G1 ← G1 ◦

√
[(R1−Y1V1)V T1 W

T +αG0
1+ΓvT1 u]

[G1(WV1V T1 W
T +α+ΓuTu)]

, (13)

assuming the numerator and the denominator are both more
than or equal to zero.

Proof. The key is to construct the auxiliary function of
Lagrangian function L. According to Lemma 3, Lemma 4,
and Proposition 5, we can obtain the Lagrangian function
L(G

(0)
1 ) = H(G

(0)
1 , G

(0)
1 ) ≥ H(G

(1)
1 , G

(0)
1 ) ≥ L(G

(1)
1 ) · · · ≥

L(G
(maxIter)
1 ). Thus, L is monotonically decreasing other

variables are fixed.

Lemma 3. [36] Z(h, h′) is an auxiliary function of F (h)
if the conditions Z(h, h′) ≥ F (h) and Z(h, h) = F (h) are
satisfied. If Z is an auxiliary function for F , then F is non-
increasing under the update:

h(t+1) = argminhZ(h, h′). (14)

Lemma 4. [37] For any matrices A ∈ Rn×n+ , B ∈ Rk×k+ ,
S ∈ Rn×k+ , and S′ ∈ Rn×k+ , and A and B are symmetric, the
following inequality holds:

n∑
i=1

k∑
p=1

(AS′B)ipS
2
ip

S′
ip

≥ Tr(STASB). (15)

Proposition 5. Let L(G1) denote the sum of all terms in L that
contain G1. An auxiliary function for L(G1) is the following:

H(G1, G
′
1)=

∑
ij

[G′
1(WV1V

T
1 W

T +α+ΓuTu)](ij)
(G1(ij))

2

G′
1(ij)

−

2
∑
ij

[(R1−Y1V1)V T1 W
T+αG0

1+ΓvT1 u](ij)G
′
1(ij)

(1+log
G1(ij)

G′
1(ij)

).

(16)

Furthermore, it is a convex function with respect to G1 and
has a global minimum.

Proof. This can be proved similarly as in [37]. We have the
Lagrangian function L(G1) based on the definition of trace
and Frobenius norm of a matrix:

L(G1)=Tr[−2(R1−Y1V1)V T1 W
TGT1 −2αG0

1G
T
1−

2ΓvT1 uG
T
1 +G1WV1V

T
1 W

TGT1 +αG1G
T
1 +ΓG1u

TuGT1 ]. (17)

Giving the assumption in Theorem 2 that the numerator and
the denominator are both more than or equal to zero, according
to Lemma 4, we have

Tr(G1WV1V
T
1 W

TGT1 +αG1G
T
1 +ΓG1u

TuGT1 ) ≤∑
ij

(G′
1WV1V

T
1 W

T +G′
1α+G′

1ΓuTu)(ij)
(G1(ij))

2

G′
1(ij)

. (18)

Because z ≥ 1 + log(z),∀z > 0, let z =
G1(ij)

G′1(ij)
, we have

Tr[(R1−Y1V1)V T1 W
TGT1 +αG0

1G
T
1 +ΓvT1 uG

T
1 ] ≥∑

ij

[(R1−Y1V1)V T1 W
T +αG0

1+ΓvT1 u](ij)G
′
1(ij)

(1+log
G1(ij)

G′
1(ij)

).

(19)

Summing over all the bounds of eqs. (18) and (19), we can
obtain H(G1, G

′
1), which clearly satisfies: (1) H(G1, G

′
1) ≥

L(G1) and (2) H(G1, G1) = L(G1).
Then, fixing G′1, we minimize H(G1, G

′
1):

∂H(G1, G
′
1)

∂G1(ij)

=2[G′
1(WV1V

T
1 W

T +α+ΓuTu)](ij)
G1(ij)

G′
1(ij)

−2[(R1−Y1V1)V T1 W
T +αG0

1+ΓvT1 u](ij)
G′

1(ij)

G1(ij)

, (20)

and the Hessian matrix of H(G1, G
′
1) is

∂2H(G1, G
′
1)

∂G1(ij)G1(kl)

=2δikδjl{[G′
1(WV1V

T
1 W

T +α+ΓuTu)](ij)
1

G′
1(ij)

+[(R1−Y1V1)V T1 W
T +αG0

1+ΓvT1 u](ij)
G′

1(ij)

(G1(ij))
2
}, (21)

which is a diagonal matrix with positive diagonal elements.
Therefore, H(G1, G

′
1) is a convex function of G1, and we

can obtain the global minimum of H(G1, G
′
1) by setting

∂H(G1, G
′
1)/∂G1(ij) = 0.

Solving for G1, the minimum is

G1(ij) =G′
1(ij)

√
[(R1−Y1V1)V T1 W

T +αG0
1+ΓvT1 u](ij)

[G′
1(WV1V T1 W

T +α+ΓuTu)](ij)
, (22)

which is consistent with the updating formula eq. (13) derived
from the KKT condition mentioned in Theorem 2.



TABLE II
DATASET DESCRIPTIONS.

Data User Item Rating Gender(M/F) Age(Y/O)
Movie 6040 3461 1M 71%/29% NA
Flixster 6000 3500 2M 38%/62% 59%/41%
Book 6461 3680 0.2M NA 20%/80%

IV. EXPERIMENTS

We evaluate the proposed TMF approach on the union of
three real-world rating datasets MovieLens (M), Flixster (F),
and BookCrossing (B) to demonstrate its effectiveness.

A. Datasets and Evaluation Criteria

Based on the availability of data, we use MovieLens to
infer gender information in Flixster, use Flixster to infer
gender information in MovieLens, and use Flixster to infer
age information in BookCrossing. The details of each dataset
are shown in Table II.

MovieLens1: The MovieLens dataset contains 3952 movies,
6040 users, and about 1 million ratings (scales 1-5). Each user
has more than 20 ratings. We select 3461 movies with more
than 3 ratings for the experiment. There are 999792 ratings and
the density is 4.78%. The fraction of male users is 71.1%.

Flixster: The Flixster movie dataset collected by Jamali et
al. [38]. We randomly select users with at least 200 ratings
and movies with at least 100 ratings, which results in a
subset of 2608105 ratings for 3500 movies by 6000 users.
The rating density is 12.43% and the fraction of males is
38.3%. Note that the skew in gender distribution is the opposite
of the one in MovieLens. In the task of age prediction, we
follow an arbitrary convention of setting 25 years as the
threshold between ‘young’ and ‘old’. People who are below
the threshold are labeled as ‘young’, and otherwise are labeled
as ‘old’. The fraction of users with an ‘old’ label is 41.0%.

BookCrossing2: For the BookCrossing dataset, for consis-
tency across the evaluation datasets, we normalize the rating
scales from 1 to 5 and select 6461 users and 3680 books with
more than 15 and 20 ratings, respectively. There are 170134
ratings and the rating density is 0.72%. The fraction of users
with an ‘old’ label is 79.6%.

To evaluate, we withheld the ground truth labels in the
target domain and measured the classification accuracy us-
ing weighted-precision, recall, and f-score. In addition, we
measured the f-score in each demographic category. Note
that demographic labels in target domains are only used for
evaluation, and not for training.

B. Baseline Methods and Parameter Settings

Our baselines include MF-Logistic, which uses matrix
factorization [39] to decompose the rating matrices to latent
vectors of size k in the source and target domains inde-
pendently, and trains a logistic regressor to predict the user
demographic labels given the low-rank user feature matrix in

1https://grouplens.org/datasets/movielens/
2http://www2.informatik.uni-freiburg.de/˜cziegler/BX/

the source domain. Finally, the regressor is used to predict the
user labels in the target domain. The drawback of this model is
that the latent vectors in both domains may not be well aligned
and in fact may represent quite different latent characteristics
in source and target domains.

RMGM [26] is a rating matrix generative model based on
the assumption that ratings are drawn from a shared cluster-
level model. The core idea of this method is that each rating
matrix Ri can be decomposed via tri-factor matrix factoriza-
tion. The decomposition consists of a user membership matrix,
an item membership matrix, and a core rating matrix that
represents the mean item rating of the cluster and is shared
across domains. The mixture generative model can be applied
to demographic prediction with a simple modification in which
the demographic label of the majorities in the source domain
can be used as the predicted labels for users in the target
domain. This approach transfers demographic knowledge in
an unsupervised fashion.

MTrick is applied to cross-domain text document classifi-
cation by Zhuang [31] based on tri-factor matrix factorization.
The decomposition consists of document membership matri-
ces, word membership matrices, and an association matrix
between word clusters and document classes shared between
source and target domains. The method can be adjusted to fit
the cross-domain demographic classification. Specifically, our
demographic probability matrix is analogous to the document
membership matrix. One drawback is that the model assumes
users in the same demographic cluster will give the same rating
scores on the same item and ignores the individual preferences
of each user. Regularization terms for MTrick were later added
by Wang et al. [32] and Long et al. [28] to improve model
generalization, a baseline we call DKT [32].

Our model TMF differs from others in that it characterizes a
user profile as an integration of both a group-level profile that
captures the preference of users within the same demographic
group and a personal profile that captures users’ personal
preferences. In addition, we consider our TMF model with
a full selection of regularization terms λ, γ, which we call
Reg-TMF. TMF involves fewer regularization terms, i.e., no
regularization parameter λ, γ for latent vectors Yπ , Vπ , G2

and W . We also explore regularization parameter sensitivities
in Section IV-D. For most of the experiments, γ = λ = 0.01
is used for all latent variables. The trade-off parameters are
α = 0.2 and β = 1. We evaluate the objective function
under different numbers of latent dimensions from 5 to 50
and choose the best latent dimension k. At the beginning, we
randomly initialize Y1, Y2, V1, V2,W with non-negative values.
We randomly initialize the demographic information matrices
G1 and G2 with entries in the range of 0 to 1. The maximum
number of iterations maxIter used in the optimization is 300.

C. Demographic Prediction Results

The results are reported in Table III, where F denotes the
Flixster dataset, M denotes the MovieLens dataset and B
denotes the BookCrossing dataset. In this section, we will first
briefly summarize the experiment results and then discuss the



TABLE III
AVERAGE PERFORMANCE AND PER-GROUP FSCORE FOR MULTIPLE METHODS INFERRING DIFFERENT TYPES OF DEMOGRAPHICS.

Data Metrics Methods
MF-Logistic RMGM MTrick DKT TMF Reg-TMF

F to M
infer gender

Precision 0.3750 0.4672 0.5659 0.5639 0.7194 0.7195
Recall 0.4015 0.4860 0.5440 0.5418 0.7304 0.7311
Fscore 0.3878 0.4764 0.5547 0.5526 0.7249 0.7253

Female-Fscore 0.2835 0.3554 0.3405 0.3398 0.4767 0.4759
Male-Fscore 0.4457 0.5460 0.6765 0.6744 0.8083 0.8085

M to F
infer gender

Precision 0.4278 0.5098 0.6338 0.6337 0.6980 0.6978
Recall 0.6214 0.5350 0.7692 0.7689 0.6963 0.6961
Fscore 0.5068 0.5221 0.6950 0.6948 0.6971 0.6970

Female-Fscore 0.3315 0.6224 0.7468 0.7467 0.7519 0.7517
Male-Fscore 0.4999 0.3016 0.3389 0.3387 0.6141 0.6140

F to B
infer age

Precision 0.2843 0.4728 0.4337 0.4331 0.6282 0.6262
Recall 0.7696 0.5461 0.6173 0.6179 0.5921 0.5898
Fscore 0.4152 0.5068 0.5095 0.5092 0.6096 0.6074

Young-Fscore 0.3310 0.3271 0.3504 0.3504 0.2545 0.2502
Old-Fscore 0.2306 0.5667 0.4980 0.4970 0.7524 0.7511

effects of the difference of demographic distributions in the
source and target domains, the amounts of labeled users, and
the sparsity of ratings on the classification accuracy.

First, comparing the performance of all six models, we
can see that our model TMF and its variation Reg-TMF
consistently outperform others in all three types of demo-
graphic prediction. According to Weinsberg’s [3] work, gender
prediction in a single domain has reached 80% while our
method achieves up to 73% across certain domains. The MF-
Logistic approach performs the worst since it does not align
the two domains jointly. RMGM is better than MF-Logistic but
the weighted F-score is just slightly above 0.5. The reason for
the poor performance is that the demographic labels are not
correlated with the generation of the ratings. MTrick and TMF
perform much better than others because they both correlate
demographic labels with rating generation in a supervised
fashion. The crucial reason for TMF achieving the highest
performance is that it characterizes a user profile with both
an individual preference profile and a non-demographic user
preference.

For all three types of demographic prediction, the distri-
bution of the demographic labels in the source domain is
totally opposite to that in the target domain, which makes the
prediction tasks very challenging. In particular, the MovieLens
dataset has a majority of males while the Flixster dataset has
many more female users. In age prediction, the proportion
of youth and old in the source domain is also opposite to
that in the target domain. As shown in Table III, the MF-
Logistic approach has extremely high recall but extremely
low precision when we predict ages from Flixster to the
BookCrossing dataset. This is because the method has a
strong tendency to predict the majority class in the source
domain for most of the users when the source domain is
unbalanced. A good method should balance between recall
and precision. Compared to other methods, our model TMF is
more robust and consistently outperforms others regardless of
the difference in demographic distributions in the source and

TABLE IV
PREDICTION PERFORMANCE OF DIFFERENT DEMOGRAPHIC

DISTRIBUTIONS USING FLIXSTER TO INFER AGE IN
BOOKCROSSING.

Age Precision Recall Fscore Source Target
Youth(%) Youth(%)

20 0.6290 0.6047 0.6166 38.03 7.41
25 0.6262 0.5898 0.6047 58.87 20.40
30 0.6002 0.6003 0.6003 72.75 39.00
35 0.5889 0.5929 0.5909 81.48 57.02

target domains.
We can also see that the age prediction performance from

Flixster to BookCrossing is weaker than the other two types
of demographic prediction in Table III. One of the reasons is
that BookCrossing ratings are extremely sparse with a rating
density around 0.72%, compared to MovieLens (4.78%) and
Flixster (12.43%). Demographic prediction tends to be much
better with sufficient data in the target domain. We discuss
the effects of the amounts of labeled users and the sparsity of
ratings in the following paragraphs.

Effect of Demographic Distributions. To explore the effect
of demographic distributions on the prediction performance in
more detail, we carry out a series of experiments using Flixster,
inferring age information in BookCrossing. We compare our
model with all others except DKT since MTrick and DKT
perform similarly. Specifically, we adjust the age threshold
from 20 to 35 and divide the users into two different groups:
youth and not youth. As the threshold changes, the distri-
bution of age groups in the source and target domains will
also change. From Table IV, we can see that the prediction
performance of TMF is quite stable regardless of the change
in demographic distribution. Performance is typically higher
when the demographic distribution in the source domain is
balanced. In particular, when the age threshold is 20 or 25, the
proportion of youth in the source domain is more balanced and
the prediction performance is better, but as the demographic
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Fig. 2. Prediction performance with respect to different amounts of labeled users in source domain using Flixster to infer gender in MovieLens.
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Fig. 3. Accuracy with respect to densities of testing data using different methods.

distribution in the source domain becomes more and more
unbalanced, the prediction performance decreases somewhat.
On the other hand, if the demographic distribution in the target
domain is similar to that in the source domain, the performance
is generally good. When the demographic distribution in the
target domain is opposite to that in the source domain, the
performance decreases. In Table IV, we can see that the ratio
of youth vs. non-youth is 4:6 when the age threshold is 20,
and the ratio is 6:4 when the threshold is 25. However, for the
former case, the distributions for the source and target domains
are more similar and thus performance is better.

Effect of Amounts of Labeled Users. We also evaluated
our model’s prediction performance with different amounts of
labeled users in the source domain, inferring the MovieLens
gender information using the Flixster dataset. We randomly
selected 100, 500, 2000, and the full dataset (6000 users)
from the Flixster dataset, and constructed several subsets as
the source domain rating datasets, respectively.

Figure 2 demonstrates that the prediction performance of
TMF steadily increases with increasing amounts of labeled
users that we know in the source domain. Even if we only
have a few labeled users, TMF still can reach high prediction
performance. Figure 2 shows that only 500 labeled users can
get more than 66% demographic prediction for precision,
recall, and f-score. The other methods all perform weaker
than ours as shown in Figure 2(b), with the exception that
the recall of MF-Logistic is sometimes extremely high. The
reason is that MF-Logistic tends to predict the majority label

for most of the users in one group when the source domain is
unbalanced. In such cases, the MF-Logistic’s gambling policy
can achieve either an extremely high recall or an extremely
low recall, which is also shown in Table III.

Effect of Rating Sparsity. We also evaluated the sensitivity
of our model TMF with respect to different levels of rating
sparsity. Generally, prediction performance can be affected
by the density of the rating matrices from either the source
domain or the target domain dataset. In fact, we are more
curious about the performance of the model when the rating
density in the target domain varies: the rating data in the source
domain are generally sufficient for constructing the shared
association matrix between demographics and latent features.
In addition to the original datasets, we subsampled datasets
with an additional 4 levels of density in the target domain, for
each type of demographic prediction task. Specifically, due
to different density levels in the original data, for the target
domain datasets, we randomly dropped out some ratings from
the original matrix and obtained subsets with 1%, 2%, 3% and
4% rating ratios for Movielens, subsets with 2.5%, 5.0%, 7.5%
and 10.0% rating ratios for Flixster, and subsets with 0.15%,
0.30%, 0.45% and 0.60% rating ratios for BookCrossing. In
Figure 3(a), we used the 2.5% density Flixster dataset, from
which we randomly selected 6000 users and 3500 movies with
more than 60 and 12 ratings, respectively, as the source domain
rating matrix.

The experiment results in Figure 3 show that for all models,
the performance improves (prediction accuracy increases) as



0.1 0.2 0.5 0.8 1 2 5 10

0.71

0.715

0.72

0.725

0.73

0.735

0.74

0.745
E

v
a
lu

a
ti

o
n
 M

e
tr

ic
s

Precision

Recall

Fscore

0.1 0.2 0.5 0.8 1 2 5 10

0.68

0.69

0.7

0.71

0.72

0.73

0.74

E
v
a
lu

a
ti

o
n
 M

e
tr

ic
s

Precision

Recall

Fscore

0.01 0.1 0.2 0.35 0.5 0.8 1 2

0.71

0.715

0.72

0.725

0.73

0.735

0.74

0.745

E
v

a
lu

a
ti

o
n

 M
e
tr

ic
s

Precision

Recall

Fscore

Fig. 4. Gender prediction performance with respect to different parameter settings of TMF using Flixster to infer gender information in MovieLens.

the density of the target domain increases. Moreover, the
figures demonstrate that our model TMF is more sensitive
to the density when the target domain data is not dense
enough. However, when the first level is 2.5% in Figure 3(b),
all the models do not improve much further with respect to
the density. This shows TMF can reach good demographic
prediction performance using less data, which also means
higher efficiency in practice. Finally, it is obvious that the
factor models (MTrick and TMF) perform much better than
the mixture model (RMGM), which indicates the advantages
of factor models that integrate demographic information from
users’ labels.

D. Parameter Effects

We used the gender inference experiment from Flixster to
MovieLens dataset to investigate the effects of regularization
parameters. The proposed TMF model has several regulariza-
tion parameters including α, β, γ, and three types of λ in
eq. (4). We present the parameter sensitivity results of this
experiment, using Flixster to infer gender in MovieLens, in
Figure 4. Parameter α specifies how strictly the demographic
information should match the label. Bigger α enforces a
closer match to the label when the users’ demographics affect
the ratings. We can see that the prediction performance is
quite stable with respect to a wide range of α except for
extreme values. Parameter β controls the balance between
the number of observations in the source and target domains.
Specifically, the rating loss should not be dominated by the
domain with more observed ratings. We can see that good
prediction performance depends on the balance between the
rating densities of the two domains, implying that either a very
large or small β is not appropriate. We have found the same
phenomenon when using other types of datasets for inferring
demographics. Parameter λW provides regularization for the
latent matrix W . Figure 4 demonstrates that the prediction
performance is also stable with respect to the regularization
parameter, but in this case its sensitivity is slightly more than
observed for α. In our experiments, the effects of the three
types of λ and γ parameters are similar, so we chose λW for
illustration. In sum, for α, λ and γ, our model’s prediction
performance is quite stable with respect to a wide range of
parameter values.

V. DISCUSSION

Our framework can be easily applied to inferring demo-
graphics beyond the binary age and gender labels used in these
experiments, in order to solve more general transfer learning
problems across domains, under the assumption that entities
(e.g., users or items) with certain common characteristics tend
to exhibit similar behavior in related domains. For example,
instead of binary classification for each type of user trait
prediction, our model could also be used for multi-class
classification: to predict a multi-class user trait (e.g. education
level), we can simply adopt one-vs-all classification while still
keeping the current model formulation. In addition, we can
predict different types of user traits jointly by grouping users
at finer granularity (e.g., young/old female, young/old male,
etc.) and set the cluster number appropriately (e.g., c = 4). Ex-
amples of other types of demographic information that could
be analyzed in this way include political or religious view,
race, education level, geo-location, and employment status. An
appropriately validated version of our approach can be also
used to infer personality traits for group-level study purposes
when obtaining information through questionnaires (e.g, for
big five personality traits [40]) in some domains may be
difficult or impossible.

VI. CONCLUSIONS

We introduced a novel method called Transfer Matrix
Factorization (TMF) to solve the problem of predicting
user demographics using ratings in a target domain, through
knowledge transfer from the source domain, in which users’
ratings and the corresponding demographics are available. Our
main contributions are: (1) Our model explores effectively the
correlation between demographics and ratings across different
domains that share neither common users nor common items.
(2) We develop an iterative algorithm for this optimization
and theoretically show its convergence. (3) Extensive exper-
iments using real-world datasets demonstrate that our model
can achieve higher classification accuracy, regardless of the
amounts of labeled users, the sparsity of ratings, and the
difference of demographic distributions in source and target
domains. Our approach can be used as an analytical tool to
assess the privacy impact for users of providing specific kinds
of user information in one or more source domains, in the
context of the existence of complementary data in a target
domain. In future work, we would like to use our results to in-
vestigate effective strategies for operations such as obfuscating



ratings that better protect user privacy. The potential success
of various applications of the proposed method has positive
impact on not only computer science but also psychology and
social science.
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