
Geometric Hawkes Processes with Graph
Convolutional Recurrent Neural Networks

Jin Shang and Mingxuan Sun
Division of Computer Science and Engineering

Louisiana State University
jshang2@lsu.edu, msun@csc.lsu.edu

Abstract

Hawkes processes are popular for modeling correlated tem-
poral sequences that exhibit mutual-excitation properties. Ex-
isting approaches such as feature-enriched processes or varia-
tions of Multivariate Hawkes processes either fail to describe
the exact mutual influence between sequences or become
computational inhibitive in most real-world applications in-
volving large dimensions. Incorporating additional geometric
structure in the form of graphs into Hawkes processes is an
effective and efficient way for improving model prediction
accuracy. In this paper, we propose the Geometric Hawkes
Process (GHP) model to better correlate individual processes,
by integrating Hawkes processes and a graph convolutional
recurrent neural network. The deep network structure is com-
putational efficient since it requires constant parameters that
are independent of the graph size. The experiment results on
real-world data show that our framework outperforms recent
state-of-art methods.

Introduction
Hawkes processes, which are capable of modeling tempo-
ral events that exhibit self-exciting properties, have been
widely applied in various applications such as supporting
decision making in smart health (Xu et al. 2017), inferring
granger causality (Xu, Farajtabar, and Zha 2016), and pre-
dicting recurrent user behaviors (Zhou, Zha, and Song 2013;
Du et al. 2016; Shang and Sun 2018). Generally, Hawkes
processes are useful for modeling a collection of correlated
event sequences such as earthquakes at N locations or the
diffusion ofM infectious diseases among a group ofN peo-
ple. For example, in analyzing on-line user behaviors such as
visiting websites, recent approaches such as (Du et al. 2015)
treat the recurrent events of each user-item pair as an one-
dimensional Hawkes process, and assume the parameters of
all processes have a low-rank structure. However, methods
that typically treat each process independently would fail to
achieve good performance when there are insufficient obser-
vations for each process.

Multivariate Hawkes processes (Liniger 2009) are suit-
able for modeling multiple correlated sequences, where the
occurrence of an event in one sequence may influence the

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

occurrence of new events in another. For example, in so-
cial event analysis, the events of an individual user can be
modeled as an one-dimensional Hawkes process and events
in a network can be modeled as a Multivariate Hawkes pro-
cess (Farajtabar et al. 2014; Mei and Eisner 2017; Yang et al.
2018), which captures the correlations of both endogenous
and exogenous event intensities. Extensive studies (Lemon-
nier, Scaman, and Kalogeratos 2017; Etesami et al. 2016;
Eichler, Dahlhaus, and Dueck 2017; Xu, Farajtabar, and
Zha 2016) have focused on estimating the excitation ma-
trix of multivariate processes for different inference tasks.
However, those approaches are either unable to accurately
capture the mutual influence between processes or become
computational inhibitive in most real-world events involv-
ing large dimensions (Eichler, Dahlhaus, and Dueck 2017;
Hall and Willett 2016).

Incorporating geometric structure in the form of graphs
into Hawkes processes is an effective and efficient way for
improving model prediction accuracy. In many real world
applications, correlations between different Hawkes pro-
cesses can be encoded by a graph. For example, in mod-
eling the sequences of user-item interactions, the similarity
of users and items can be represented by a user graph and
an item graph, respectively. Such additional graph informa-
tion can be used to impose smoothness priors on the pa-
rameters such as the base intensities of each individual pro-
cess. Recently, geometric deep learning (Bruna et al. 2014;
Defferrard, Bresson, and Vandergheynst 2016; Kipf and
Welling 2017; Monti, Bronstein, and Bresson 2017) are
promising techniques that can learn meaningful representa-
tions for geometric structure data such as graphs and have
been successfully applied in various applications such as
matrix completion.

In this paper, we propose a novel Geometric Hawkes Pro-
cess (GHP) model by integrating geometric deep learning
into Hawkes processes, which aims to efficiently capture
meaningful patterns in a large collection of correlated se-
quences of recurrent events. Specifically, each sequence is
modeled as a Hawkes process and the proximities between
different processes are encoded in a graph. A novel convo-
lutional and recurrent neural network is adopted to extract
local meaningful patterns from the graph. The learned mean-
ingful embeddings are then used to generate parameters such
as the base intensities that characterize Hawkes processes.

Comparing to traditional methods, our GHP correlates each
individual Hawkes process effectively through graph em-
bedding and it is computational efficient since the deep net-
work structure requires constant parameters that are inde-
pendent of the graph size. To the best of our knowledge, our
GHP model is the first one to learn Hawkes processes with
geometric deep learning. We also present the detail design
of the single-graph and multi-graph cases for our Geomet-
ric Hawkes Process (GHP) model. Extensive experiments on
real-world datasets demonstrate the predicting performance
improvements of our model in comparison with the state of
the art.

Related Work
Variations of Hawkes processes have been proposed for
modeling correlated sequences. For example, the work by
Zhou et al. (Zhou, Zha, and Song 2013) uses a multi-
dimensional Hawkes process to learn the social interactiv-
ity in a sparse low-rank network. The work by Farajtabar et
al. (Farajtabar et al. 2014) uses a Multivariate Hawkes pro-
cess to model social events, which can capture both endoge-
nous and exogenous event intensities. For modeling collec-
tions of user-item interactions, Du et al. (Du et al. 2015)
assume that sequences of all user-item pairs are indepen-
dent and the coefficients of all these point processes have
low rank structure. A co-evolutionary latent feature pro-
cess (Wang et al. 2016) has been further proposed to con-
struct interdependent Hawkes processes by taking advantage
of additional features such as user features, item features,
and interaction features between users and items. Those fea-
tures are globally embedded to Hawkes processes. However,
those techniques do not fully exploit the local geometric
structures of different processes in the form of graphs.

Recently, geometric deep learning becomes promising be-
cause the convolutional framework can be applied on non-
Euclidean data, e.g, graphs, to extract important features.
Some studies such as (Niepert, Ahmed, and Kutzkov 2016)
focus on the vertex domain. However, it’s hard to define an
appropriate neighbor for each vertex and the extracted fea-
tures sometimes are not representative especially on high
dimensional data structure. Another way is to formulate
graph convolutional on spectral domain (Bruna et al. 2014;
Defferrard, Bresson, and Vandergheynst 2016; Kipf and
Welling 2017; Monti, Bronstein, and Bresson 2017), which
is the key concept underlying our work.

The first version of Graph Convolutional Network
(GCN) (Bruna et al. 2014) contains n convolutional ker-
nel parameters, which is not only computational inhibitive
but also lacks spatial localization. To solve these problems,
ChebyNet (Defferrard, Bresson, and Vandergheynst 2016)
uses Chebyshev polynomial localized filters to replace the
diagonal matrix, which reduces the computation complex-
ity from O(n2) to O(n). Based on this type of framework,
a lot of studies (Kipf and Welling 2017; Monti, Bronstein,
and Bresson 2017) apply GCN to several specific tasks such
as text classification, traffic forecasting, and matrix comple-
tion. The most closest ones to ours are the applications on
matrix completion. However, their work mainly focus on

modeling two dimensional data in the from of a M by N
matrix without considering temporal dynamics.

Model
In this section, we introduce our Geometric Hawkes Process
model.

Background on Hawkes Processes
A univariate Hawkes process is a self-exiting temporal point
process and the realization of the process consists of a list
of discrete temporal events T = {ti}ni=1. It is suitable for
modeling the mutual excitation between events such as the
occurrences of earthquakes at a particular location. The con-
ditional intensity function that characterizes a Hawkes pro-
cess is defined as:

λ(t) = η + α
∑
ti∈Tt

κσ(t− ti), (1)

where κσ(t) := exp(−t/σ) is an exponential kernel func-
tion that captures temporal dependencies, σ is the bandwidth
parameter of the kernel, η ≥ 0 is the baseline intensity that
captures the long-term incentive to generate events, α ≥ 0
is the coefficient that scales the influence of each previous
event, and Tt = {ti|ti < t}ni=1 denotes the history up to but
not including time t.

Generally in real world applications, we would like to
model a collection of correlated event sequences such as
earthquakes at N locations. Intuitively, each of the N se-
quences can be modeled as a self-exciting Hawkes process:

λu(t) = hu + au
∑

tuj ∈T
u
t

κσ(t− tuj), (2)

where u = 1, ..., N is the index of sequences such as
uth location, h and a are both vectors of size N and their
uth entries represent the non-negative base intensity and the
self-exciting coefficient for uth process respectively. The se-
quence T ut = {tuj |tuj < t}nj=1 denotes the set of historic
events of uth process up to but not including time t.

For events involving a pair of entities such as the interac-
tion events between M users and N items (e.g., various in-
fectious diseases among a group of people), the occurrences
of interaction events between user u and item i can be mod-
eled as following:

λ(u,i)(t) = Hu,i + Au,i

∑
t
u,i
j ∈T

u,i
t

κσ(t− tu,ij), (3)

where H denotes an m × n matrix with the (u, i)th entry
equal to the non-negative base intensity for pair (u, i), A
denotes an m × n matrix with the (u, i)th entry equal to
the self-exciting coefficient for pair (u, i), and the sequence
T u,it = {tu,ij |t

u,i
j < t}nj=1 denotes the set of historic events

of pair (u, i) up to but not including time t.
However, treating each process independently would fail

to achieve good performance when there are insufficient ob-
servations for each process. Incorporating correlations be-
tween processes such as location proximities and user/item
similarities can improve the model prediction accuracy. The
proximity between multiple Hawkes processes can be repre-
sented as an undirected weighted graph such as a proximity
network of locations, a social network of users, and a net-
work encoding item similarities.

Background on Geometric Deep Learning
Formally, an undirected weighted graph is denoted as G =
(V,E,W), where V is a finite set of |V | = n vertices, E is
the set of edges andW ∈ Rn×n is the adjacency matrix with
entries Wij > 0 if (i, j) ∈ E. For each graph, a Laplacian
matrix, which is an n × n symmetric positive-semidefinite
matrix, can be constructed to reflect useful properties of a
graph. Usually, the graph Laplacian is constructed as:

L = In −D−1/2WD−1/2, (4)

where D ∈ Rn×n is the degree matrix with Dii =
∑
jWij

and In is the identity matrix.

Graph Convolution Network (GCN) Graph convolution
is typically formulated in the spectral domain through graph
Fourier transform (Mallat 1999). Specifically, a graph Lapla-
cian L admits a spectral eigendecomposition of the form
L = UΛU>, where U = [u0, ..., un−1] ∈ Rn×n is
the orthonormal matrix and is the complete set of the
orthonnormal eigenvectors {ul}n−1

l=0 ∈ Rn, and Λ =
diag([λ0, ..., λn−1]) ∈ Rn×n is the diagonal matrix with the
associated ordered real nonnegative eigenvalues {λl}n−1

l=0 .
In particular, eigenvectors are known as the Fourier atoms
in classical harmonic analysis and eigenvalues are usually
interpreted as the frequencies of the graph. Given a func-
tion x = (x0, ..., xn−1)> ∈ Rn on the vertices of the
graph, the graph Fourier transform on graph G is defined
as x̂ = (x̂(λ0), ..., x̂(λn−1)) = U>x ∈ Rn and its inverse
is x = U x̂ (Shuman et al. 2013). Thus, the spectral convo-
lutional of function x and convolutional kernel function y
on graph G is given by (Bruna et al. 2014):

(x ? y)G = U · diag([ŷ(λ0), ..., ŷ(λn−1)]) · U>x, (5)

where � is the element-wise Hadamard product. It is
worth mentioning that convolutions are by definition lin-
ear operators that diagonalize in the spectral domain, ac-
cording to the definition of Discrete Fourier Transform
and the Convolution Theorem (Mallat 1999). Thus, a GCN
layer can be defined as xoutput = σ((x ? y)G), where
diag([ŷ(λ0), ..., ŷ(λn−1)]) represents parameters of learn-
able filters in the spectral domain, and σ denotes the acti-
vation function (e.g. ReLU) which is applied on the vertex-
wise function values.

In order to reduce the computational complexity and the
number of the parameters, as well as adding localization
which is common in graph signal processing (Hammond,
Vandergheynst, and Gribonval 2011), a polynomial filter
was introduced by (Defferrard, Bresson, and Vandergheynst
2016). Thus, the GCN layer with one filter has the following
forms: xoutput = σ(

∑K−1
k=0 θkL

kx), where θ = {θk}K−1
k=0

is a vector of polynomial coefficients for such a filter and
the number of parameters is K. Note that the formula in-
volves only the computation of the Laplacian L without the
computation of its decomposition of U . Specifically, the fil-
ter can be approximated by the Chebyshev polynomial basis
Tk of degree k (Hammond, Vandergheynst, and Gribonval
2011), where Tk(λ̃l) = 2λ̃lTk−1(λ̃l)− Tk−2(λ̃l) is defined
in a recursive way with T0 = 1 and T1 = λ̃l. Thus, the GCN
layer with one filter becomes (Defferrard, Bresson, and Van-

dergheynst 2016):

xoutput = σ(

K−1∑
k=0

θkTk(L̃)x), (6)

where L̃ = 2L/λmax − In is the rescaled Laplacian with
scaled eigenvalues Λ̃ = 2Λ/λmax − In in the interval
[−1, 1].

By applying kernel polynomial localization, the computa-
tional complexity becomesO(n) rather thanO(n2) (Deffer-
rard, Bresson, and Vandergheynst 2016), as we don’t need to
do eigendecomposition. Also, the parameter number is only
K rather than n, and the convolutional kernel with spatial lo-
calization will benefit local feature extraction. A simplified
variant of this filter (Kipf and Welling 2017), which assumes
K = 1 and λmax = 2, also achieves good performance on
classification tasks.

GCN with Multi-graph (Multi-GCN) According to the
definition of multidimensional Fourier Transform, Graph
Fourier Transform and GCN layers can be extended to multi-
graph version (Kurokawa, Oki, and Nagao 2017; Monti,
Bronstein, and Bresson 2017). Given two scaled graph
Laplacian (referred to single-graph convolutional layer)
Lr ∈ Rm×m and Lc ∈ Rn×n with m vertices on the row
graph Gr and n vertices on the column graph Gc, a multi-
GCN layer with one filter is defined as (Monti, Bronstein,
and Bresson 2017):

Xoutput = σ(

K−1∑
k=0

K−1∑
k′=0

θkk′Tk(L̃r)XTk′(L̃c)), (7)

where function X ∈ Rm×n is two dimensional and such
filter is parameterized by a K × K matrix of polynomial
coefficients Θ = (θkk′).

Generalized GCN Layers More generally, considering
the computation effectiveness of convolution, we give the
following generalized form of GCN layers, which is an
high performance GCN layer referring to (Chellapilla, Puri,
and Simard 2006) and convolution implementation in Caffe.
GivenC input channels of {xc}Cc=1 (a matrix of sizem×C)
and C ′ output channels (output feature map size or the num-
ber of filters), the single-GCN layer has the generalized
form:

xc′output
= σ(

C∑
c=1

K−1∑
k=0

θkc,c′Tk(L̃)xc). (8)

where c′ = 1, ..., C ′.
Similarly, this can also be applied to multi-GCN layer.

Given C input channels of {Xc}Cc=1 (a tensor of size m ×
n×C) and C ′ output channels, the multi-GCN layer has the
generalized form:

Xc′output
= σ(

C∑
c=1

K−1∑
k=0

K−1∑
k′=0

θkk′c,c′Tk(L̃r)XcTk′(L̃c)), (9)

Integration of GCN and RNN Furthermore, a GCN net-
work coupled with a RNN network can progressively recon-
struct the parameters and it has demonstrated to be highly

efficient (Monti, Bronstein, and Bresson 2017). Specifically,
the input of the GCN network is the original matrix X(0).
The output of the GCN network such as C ′ matrices are
the input to a RNN network such as LSTM (Hochreiter
and Schmidhuber 1997). Then, the output of the RNN net-
work are the input to a fully connected layer to calculate
the changes dX of the input matrix X . After several iter-
ations (e.g. T steps), the predicted value becomes X(T) =

X(T−1) + dX(T−1).

Our Geometric Hawkes Processes (GHP)

We propose a novel Geometric Hawkes Process (GHP)
model by integrating the geometric deep learning into
Hawkes processes, which aims to efficiently capture mean-
ingful patterns in a large collection of correlated sequences
of recurrent events. In our framework, each sequence is
modeled as a Hawkes process and the proximities between
different processes are encoded in graphs. Specifically, we
propose two types of GHP: single-graph GHP and multi-
graph GHP. Single-graph GHP is particularly useful for
modeling sequences with one type of graph such as model-
ing earthquakes at N locations with a proximity network of
locations. Multi-graph GHP is particularly useful for mod-
eling sequences with multiple graphs such as modeling the
diffusion of various infectious diseases among a group of
people, where the relationship of people and diseases can be
represented by a user graph and an item graph, respectively.
The learned meaningful embeddings from graphs are then
used to generate parameters such as the base intensities that
characterize Hawkes processes.

Specifically, the parameters of single-graph GHP are h,
a as described in eq. (2) and they are functions defined
on a graph, e.g., a user graph. Similarly, the parameters of
multi-graph GHP are H and A as described in eq. (3), and
they are functions defined on multiple graphs, e.g., a user
graph and an item graph. The parameters are random initial-
ized as x or X in equations eq. (6) and eq. (7) respectively,
and will be optimized in deep geometric learning. The loss
function is defined as the log-likelihood of observing the
sequences of events. Formally, based on the survival anal-
ysis theory (Aalen, Borgan, and Gjessing 2008), the like-
lihood of observing a sequence of events T = {ti}ni=1 is∏
ti∈T λ(ti) · exp(−

∫ Γ

0
λ(τ)d(τ)), where Γ is the total ob-

servation time. We present the details for the two types of
GHP as the following.

Single-graph GHP Specifically, for a collection of
Hawkes processes according to eq. (2) and eq. (6), let T u
be the set of events induced by vertex u = 1, ...,m. The
log-likelihood of observing each sequence T u is:

L(T u | xθ,ζ(T)) =
∑

tuj ∈T
u

log(x(T)
u Φuj)− x(T)

u Ψu, (10)

where:

x(T)
u =(h(u)(T),a(u)(T)),

Φuj =(1,
∑
tu
k
<tuj

κσ(tuj − tuk))>,

Ψu =(Γ,
∑

tuj ∈T
u

∫ Γ

tuj

κσ(t− tuj)dt)>. (11)

It is worth mentioning that the notation xθ,ζ(T) empha-
size the matrix depends on the parameters of GCN (poly-
nomial coefficients θ) and those of the LSTM network (de-
note as ζ) after T steps. As a result, the log-likelihood of
observing all vertices’ sequences O = {T u}u is a summa-
tion of terms by L(O) =

∑
T u∈O L(T u). Also, we want

the variables h and a to be faithful to the graph structure
G with m vertices and the corresponding graph Laplacian
Lm×m. Thus, we can add the graph regularizer h(xθ,ζ) =

ρ{tr(h>Lh)+tr(a>La)} and the squared Frobenius norm
g(xθ,ζ) = γ‖h‖2F + β‖a‖2F as (Rao et al. 2015). Finally,
we can obtain h and a by minimizing the following objec-
tive function:

OPT =min
θ,ζ
− 1

|O|
∑
T u∈O

L(T u |xθ,ζ(T))+h(xθ,ζ
(T))+g(xθ,ζ

(T))

s.t. xθ,ζ
(T) ≥ 0, (12)

where xθ,ζ = [h;a], and ρ γ, β control the trade-off be-
tween the constrains. After the parameters converging to op-
timal, we can directly use x and eq. (2) to compute the in-
tensity and make predictions.

Multi-graph GHP Similarly, we can give the objective
function of multi-graph GHP. According to eq. (3) and
eq. (7), let T u,i be the set of events induced between ver-
tex u = 1, ...,m and vertex i = 1, ..., n. The log-likelihood
of observing each sequence T u,i is:

L(T u,i |XΘ,ζ
(T)) =

∑
t
u,i
j ∈T

u,i

log(X
(T)
u,i Φu,ij)−X

(T)
u,i Ψu,i,

(13)

where:

X
(T)
u,i =(H(u, i)(T),A(u, i)(T)),

Φu,ij =(1,
∑

t
u,i
k
<t

u,i
j

κσ(tu,ij − t
u,i
k))>,

Ψu,i =(Γ,
∑

t
u,i
j ∈T

u,i

∫ Γ

t
u,i
j

κσ(t− tu,ij)dt)>. (14)

In this case, the notation XΘ,ζ
(T) emphasize the matrix

depends on the parameters of multi-GCN (polynomial co-
efficients Θ) and those of the LSTM network (denote as
ζ) after T steps. Similarly, the log-likelihood of observing
all vertices’ sequences O = {T u,i}u,i is a summation of
terms by L(O) =

∑
T u,i∈O L(T u,i). Given the row graph

structure Gr with m vertices and the column graph struc-
ture Gc with n vertices, the corresponding graph Laplacian
are Lr ∈ Rm×m and Lc ∈ Rn×n. Thus, we can add the
multi-graph regularizers as h̃(XΘ,ζ) = ρ{tr(H>LrH) +

Algorithm 1: Algorithm for Learning single-graph GHP
Input: All the training events O = {T u}u; parameters

ρ, γ, β; {xc = [hc;ac]}Cc=1
Output: The coefficients of Hawkes processes

{x(T)
c }Cc=1

begin
Initialize {x(0)

c }Cc=1.
for t← 0 to T do

Forward Propagation:
1. Apply one single-GCN layer eq. (8) on
{x(t)

c }Cc=1 producing C ′ output matrix
{x(t)

c′output
}C′

c′=1

2. Apply LSTM with a fully connected layer on
the output matrix {x(t)

c′output
}C′

c′=1 producing

small incremental update {dx(0)
c }Cc=1

3. Update {x(t+1)
c ← x

(t)
c + dx(t)

c }Cc=1
Back Propagation:
1. Clip Value ({x(t+1)

c }Cc=1)
2. Apply Adam stochastic optimization

algorithm to optimize eq. (12) and update
weights θ, ζ

end
Output {x(T)

c }Cc=1 to calculating Hawkes intensity
by eq. (2).

end

tr(HLcH
>)+ tr(A>LrA)+ tr(ALcA

>)} (Kalofolias et
al. 2014). It is worth mentioning that two matrix with m×n
dimension contain too many parameters. Usually, a lot of
points’ attributes can be categorized into a limited number
of types for the real world data. So, we assume H and A
have low-rank structures, and we can add the nuclear norm
g̃(XΘ,ζ) = γ‖H‖∗ + β‖A‖∗ as (Du et al. 2015), which is
frequently used as a convex surrogate penalty term for ma-
trix rank. Finally, we can obtain H and A by minimizing
the following objective function:

OPT =min
Θ,ζ
− 1

|O|
∑
T u,i∈O

L(T u,i|XΘ,ζ
(T))+h̃(XΘ,ζ

(T))+g̃(XΘ,ζ
(T))

s.t.XΘ,ζ
(T) ≥ 0, (15)

where XΘ,ζ = [H;A], and ρ γ, β control the trade-off
between the constrains. After the parameters converging to
optimal, we can directly use X and eq. (3) to compute the
intensity and make predictions.

Learning with Clipping We can use several stochastic
optimization algorithms such as SGD and Adam (Kingma
and Ba 2015) to solve the log-likelihood with regularizers.
However, as Hawkes processes have non-negative parame-
ters, the objective function should be optimized under such
non-negative constraints eqs. (12) and (15). Since it is the in-
equality constraints, directly solving it by adding Lagrange
multiplier or Kuhn-Tucker method (Wallace 2004) will in-
troduce the Complementary Slackness Conditions, which

makes it more complex. To enforce the non-negative con-
straints on the objective function, we clip the value to lie
within a compact space after each temporal step t = 0, ..., T
and make the lower bound greater than zero. We present the
following learning algorithms 1 and 2 for single-graph and
multi-graph GHP, respectively.

Algorithm 2: Algorithm for Learning multi-graph GHP

Input: All the training events O = {T u,i}u,i;
parameters ρ, γ, β; {Xc = [Hc;Ac]}Cc=1

Output: The coefficients of Hawkes processes
{X(T)

c }Cc=1
begin

Initialize {X(0)
c }Cc=1.

for t← 0 to T do
Forward Propagation:
1. Apply multi-GCN layer eq. (9) on {X(t)

c }Cc=1

producing C ′ output matrix {X(t)
c′output

}C′

c′=1

2. Apply LSTM with a fully connected layer on
the output matrix {X(t)

c′output
}C′

c′=1 producing

small incremental update {dX(0)
c }Cc=1

3. Update {X(t+1)
c ←X(t)

c + dX(t)
c }Cc=1

Back Propagation:
1. Clip Value ({X(t+1)

c }Cc=1)
2. Apply Adam stochastic optimization
algorithm to optimize eq. (15) and update
weights Θ, ζ

end
Output {X(T)

c }Cc=1 to calculating Hawkes intensity
by eq. (3).

end

Computational Complexity By applying polynomial lo-
calization, the single-GCN eq. (6) reachesO(n) (Defferrard,
Bresson, and Vandergheynst 2016) rather than using eq. (7)
with complexity O(n2), where n is the number of vertices
of the graph. Thus, the multi-GCN has the complexity of
O(mn) (Monti, Bronstein, and Bresson 2017) considering
C,C ′,K � min(m,n). Also, the learning complexity of
LSTM network is O(W), where the number of parameters
W = 4n2

c + 4ncni + ncno + 3nc (Sak, Senior, and Beau-
fays 2014), and the number of memory units, input units and
output units are equal to the number of output feature map
size of the GCN nc = ni = nc = C ′ in our network. As a
result, such single-GCN + RNN network has the complexity
of O(n + n · C ′ · C ′) = O(n) per time step and the multi-
graph one has the similar complexity of O(mn) per time
step. It is worth mentioning that these are computed glob-
ally. To make it more efficient, we can also address several
mini-batch with P samples from n or mn, which makes the
algorithm independent of the graph size and achieve O(P)
complexity.

Experiment and Results
In this section, we introduce the experiments.

Experimental Settings and Evaluation Metrics
We evaluate our model on three real world datasets which
contain temporal interactions between a set of users and a set
of items. Specifically, the IPTV dataset (Xu, Farajtabar, and
Zha 2016) contains 7100 users and 436 TV programs with
some program features such as genres. For each user-item
pair, it contains a sequence of viewing time during the period
of January to November 2012. The Yelp1 dataset is available
from Yelp dataset challenge. After pre-processing, it records
the time of writing reviews for 17k businesses by 100 users
during a period of 11 years. The Reddit2 dataset contains the
time of posting discussions between random selected 1000
users and 1403 threads in January 2014.

As suggested in (Monti, Bronstein, and Bresson 2017), a
user or item graph can be constructed as an unweighted k-
nearest neighbor graph in the space of features such as TV
features. In cases where user and item features are not avail-
able, we can construct a two-dimensional user-item matrix
from the time sequences where each entry indicates the to-
tal count of user-item interactions, and apply SVD to get
a latent feature vector for each use or item. We can model
these datasets using either single-graph GHP or multi-graph
GHP. For the first case, the parameters are regraded as vec-
tor functions on a graph (e.g., user graph) and the values of
each dimension (e.g., item index) are regraded as different
channels. For the second case, the parameters are regraded
as scalar functions on both user and item graphs and the size
of the input channel is one.

There are three metrics to evaluate the performance of the
model. In the experiments, we use the events before time
T ·p as the training data, and the rest of them as testing data,
where T is the length of the total time, and p = 0.76 is the
proportion where we split the data.

Test Loss: It is defined as in the objective function
eqs. (12) and (15) with fixed coefficients of Hawkes pro-
cesses learned using events in the training set.

Item Relevance: Given the history T = {ti}ni=1 of a spe-
cific user u, we calculate the survival rates for all the items
at each testing time t, that is Si(t) = exp(−

∫ t
tin
λi(τ)d(τ)).

We then order all the survivals and compute the rank of the
ground-truth item the user interacts at testing time t. Ideally
the ground-truth item should be ordered at rank one. Follow-
ing (Wang et al. 2016), we report mean average rank (MAR)
of all testing cases. A smaller value of MAR indicates better
predictive performance.

Time Prediction Accuracy: Given a specific pair of user u
and the item i, we record the mean absolute error (MAE)
of the next predicted time and the ground truth of testing
time t. The predicted time is calculated by the density of
next event time as f(t) = λ(u,i)(t)S(u,i)(t), and then use
the expectation to predict the next event. Furthermore, we
also give the relative percentage of the prediction error (Err
%).

1https://www.yelp.com/dataset/challenge
2https://dynamics.cs.washington.edu/data.html

Baseline Methods
Po: Poisson processes are simplified Hawkes processes
without capturing temporal dependencies. The only param-
eter to characterize Poisson is the base intensity η, which is
a constant.

Po-T: Poisson-Tensor uses Poisson regression error in-
stead of RMSE as the loss function when fitting the data. The
intensity are regarded as the number of events in each dis-
cretized time slot (Chi and Kolda 2012). It assumes that the
missing values are not random, and thus simulating the val-
ues with Poisson distribution is more reasonable than with
Gaussian. Once we get the model parameters, there are two
ways to simulate the intensity of test data. One is using the
intensity that we have got only in the last time interval, and
the other is using the average intensity of all the training
time intervals. We report the best performance of these two
choices.

LRH: LowRankHawkes is a collection of Hawkes pro-
cesses (Du et al. 2015) assuming that all processes are inde-
pendent and the parameters are low rank matrices. However,
there are no interactions between different processes.

Coevol: Coevolve is a co-evolutionary latent feature pro-
cess (Wang et al. 2016) which constructs interdependent
Hawkes processes by embedding user and item features
globally into each process. This method actually combines
all events happening before the current event from different
processes when fitting the parameter of each individual pro-
cess. However, the performance in terms of item relevance
may be affected due to unrelated events. In addition, if no
features are used, the model reduces to a Poisson process.

Compare Ours of Different Parameters
We first investigate the influence of important parameters in
our GHP model by evaluating them using the testing loss.
Specifically, the parameters are types of graph, k-nearest
neighbor, and finally the deep learning architectures.

Single vs Multi-graph We show the results of testing
losses with multi-graph input compared with only single-
graph input, e.g. only a user graph or an item graph, of IPTV
dataset in fig. 1(a). As we can see, the testing loss with multi-
graph input outperforms that with only single-graph input,
which prove that the graph information is extracted well by
the GCN + LSTM networks. It is worth mentioning that the
IPTV dataset contains 7100 users and 436 TV show items,
so using only the user graph achieves better results than us-
ing only the item graph. Also, the testing loss shows that the
less information inputed, the faster it overfits the data.

Number of K-neighbors We also investigate the number
K’s effect when constructing the K-nearest neighbor graph.
In fig. 1(b), we present the testing losses of IPTV dataset
with 2, 5, 10, 15, 20 -NN graph input of multi-graph GHP
model. The figure demonstrates that give the K in a reason-
able range, we can achieve a stable and accurate estimation
of the model. The results show that k = 10 is the best for
IPTV dataset. In the experiment, we use the same K for both
user and item input graphs. However, we can separately set
K for the user graph and the item graph to make it more

0 50 100 150 200 250 300 350
Iteration

1.5

2

2.5

3

3.5

4

4.5
Te

st
 L

os
s

10 4 Test Loss with different graph input

Multi-Graph
User Graph
Item Graph

(a) Graph input

0 50 100 150 200 250 300 350
Iteration

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Te
st

 L
os

s

10 4 Test Loss with different K neighbor

2
5
10
15
20

(b) K neighbor

0 50 100 150 200 250
Iteration

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Te
st

 L
os

s

10 4 Test Loss with different architecture

1GCN
1GCN+GRU
1GCN+LSTM
2GCN+GRU
2GCN+LSTM

(c) Architecture

Figure 1: Testing loss with respect to different graph inputs, different number of neighbors, and architectures on IPTV data.

flexible. According to fig. 1(a) and fig. 1(b), our GHP model
benefits from the input graph information and extracts use-
ful features from these interactions, and thus the model over-
comes the isolation of point process models such as (Du et
al. 2015).

Variations of Architecture Setting We compare differ-
ent architecture settings of our model and the results are
presented in fig. 1(c). First of all, the RNN structure such
as LSTM or GRU is essential to learn the diffusion pro-
cess of coefficients. The LSTM is more effective com-
pared to GRU (Chung et al. 2014) because LSTM can re-
member more historical information. Besides, the results
show that adding more GCN layers enhances the perfor-
mance of modeling Hawkes processes, which indicates that
deeper network may extract more useful features. As data
size increases, it is necessary to build deeper architectures.
More extensive studies on the architecture of GCN in dif-
ferent applications can be found at (Kipf and Welling 2017;
Monti, Bronstein, and Bresson 2017). In our experiment, we
found the structure of two GCN layers plus one LSTM layer
works best.

Table 1: Average prediction performance comparison on
IPTV, Yelp, and Reddit datasets.

Datasets Metrics Methods
Our LRH Coevol Po Po-T

IPTV
MAR 1.643 5.175 13.57 173.7 178.7
MAE 361.0 822.1 160.3 993.1 933.6
Err % 5.13 12.27 2.35 14.83 13.89

Yelp
MAR 94.62 116.0 671.2 7778 1738
MAE 499.0 845.7 587.3 850.9 587.1
Err % 14.59 23.71 17.49 23.91 17.48

Reddit
MAR 6.010 49.14 82.44 128.2 85.49
MAE 5367 8476 5323 10314 9155
Err % 14.15 21.50 14.27 26.59 24.09

Compare with Baselines
We compare our GHP model with some state-of-art base-
lines by evaluating the metrics of item relevance and time
prediction accuracy as shown in table 1. We use multi-graph

GHP model and the results show that our method outper-
forms other baseline methods in general. For IPTV and Red-
dit datasets, the exception occurs on time prediction of Co-
evol. Specifically, the Coevol method uses a weighted sum-
mation of all the events happened before the current event to
simulate one point’s intensity. Therefore, the returning-time
prediction is good since a large number of events are used
to simulate the intensity function. The embedding of auxil-
iary features such as TV genres is also helpful in improving
prediction accuracy. However, the item relevance prediction
becomes worse (Wang et al. 2016) because the parameters of
the individual process are influenced by unrelated processes.
Meanwhile, we can see that the Hawkes process based mod-
els, such as our model, Coevol, and LRH, get better perfor-
mances when there are sufficient history events (with nearly
400 events per point for IPTV and 30 events for Reddit) in
comparison with the Poisson related models. For Yelp data,
as each point process only has fewer than 3 events in aver-
age, the time prediction is similar among LRH and Po, which
means that the history is not such an important factor. In this
time sparsity case, factorization model Po-T gets better re-
sults than point process based models. For all three datasets,
LRH with low-rank assumption, performs worse than our
GHP that integrates graphs with low rank assumption. Obvi-
ously, integrating graphs can better capture the correlations
between different processes.

Conclusions

In this paper, we present a novel framework that inte-
grates the graph convolutional recurrent neural network and
Hawkes processes to model temporal events. Our model can
be applied to a collection of correlated temporal sequences
of recurrent events, and it is able to correlate each sequence
through graph embedding. We also present single-graph and
multi-graph settings of our model. Extensive experiments on
real-world datasets demonstrate the performance improve-
ments of our model in comparison with the state of the
art. Future work includes integrating Hawkes Processes with
other different types of deep neural network structures and
extending to other applications.

Acknowledgement
This work was supported in part by the Louisiana Board of
Regents under Grant LEQSF(2017-20)-RD-A-29. The au-
thors would also like to thank Yichen Wang and Le Song
from Georgia Tech for their helpful discussions.

References
Aalen, O.; Borgan, O.; and Gjessing, H. 2008. Survival and Event
History Analysis: A Process Point of View. Springer Science &
Business Media.
Bruna, J.; Zaremba, W.; Szlam, A.; and LeCun, Y. 2014. Spec-
tral networks and locally connected networks on graphs. In Proc.
International Conference on Learning Representations (ICLR).
Chellapilla, K.; Puri, S.; and Simard, P. 2006. High performance
convolutional neural networks for document processing. In Tenth
International Workshop on Frontiers in Handwriting Recognition.
Chi, E. C., and Kolda, T. G. 2012. On tensors, sparsity, and non-
negative factorizations. SIAM Journal on Matrix Analysis and Ap-
plications 33(4):1272–1299.
Chung, J.; Gulcehre, C.; Cho, K.; and Bengio, Y. 2014. Empirical
evaluation of gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.
Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016. Con-
volutional neural networks on graphs with fast localized spectral
filtering. In Proc. of the Annual Conference on Neural Information
Processing Systems (NIPS), 3844–3852.
Du, N.; Wang, Y.; He, N.; Sun, J.; and Song, L. 2015. Time-
sensitive recommendation from recurrent user activities. In Proc. of
the Annual Conference on Neural Information Processing Systems
(NIPS), 3492–3500.
Du, N.; Dai, H.; Trivedi, R.; Upadhyay, U.; Gomez-Rodriguez, M.;
and Song, L. 2016. Recurrent marked temporal point processes:
Embedding event history to vector. In Proc. of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Min-
ing (KDD), 1555–1564. ACM.
Eichler, M.; Dahlhaus, R.; and Dueck, J. 2017. Graphical mod-
eling for multivariate Hawkes processes with nonparametric link
functions. Journal of Time Series Analysis 38(2):225–242.
Etesami, J.; Kiyavash, N.; Zhang, K.; and Singhal, K. 2016. Learn-
ing network of multivariate Hawkes processes: a time series ap-
proach. In Proc. of the 32nd Conference on Uncertainty in Artifi-
cial Intelligence, 162–171. AUAI Press.
Farajtabar, M.; Du, N.; Rodriguez, M. G.; Valera, I.; Zha, H.; and
Song, L. 2014. Shaping social activity by incentivizing users. In
Proc. of the Annual Conference on Neural Information Processing
Systems (NIPS), 2474–2482.
Hall, E. C., and Willett, R. M. 2016. Tracking dynamic point
processes on networks. IEEE Transactions on Information Theory
62(7):4327–4346.
Hammond, D. K.; Vandergheynst, P.; and Gribonval, R. 2011.
Wavelets on graphs via spectral graph theory. Applied and Compu-
tational Harmonic Analysis 30(2):129–150.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term mem-
ory. Neural computation 9(8):1735–1780.
Kalofolias, V.; Bresson, X.; Bronstein, M.; and Vandergheynst,
P. 2014. Matrix completion on graphs. arXiv preprint
arXiv:1408.1717.
Kingma, D. P., and Ba, J. 2015. Adam: A method for stochas-
tic optimization. In Proc. International Conference on Learning
Representations (ICLR).

Kipf, T. N., and Welling, M. 2017. Semi-supervised classification
with graph convolutional networks. In Proc. International Confer-
ence on Learning Representations (ICLR).
Kurokawa, T.; Oki, T.; and Nagao, H. 2017. Multi-dimensional
graph fourier transform. arXiv preprint arXiv:1712.07811.
Lemonnier, R.; Scaman, K.; and Kalogeratos, A. 2017. Multi-
variate Hawkes processes for large-scale inference. In Proc. of the
AAAI Conference on Artificial Intelligence, 2168–2174.
Liniger, T. J. 2009. Multivariate Hawkes Processes. Ph.D. Disser-
tation, ETH Zurich.
Mallat, S. 1999. A Wavelet Tour of Signal Processing. Academic
Press.
Mei, H., and Eisner, J. M. 2017. The neural hawkes process: A
neurally self-modulating multivariate point process. In Proc. of
the Annual Conference on Neural Information Processing Systems
(NIPS), 6754–6764.
Monti, F.; Bronstein, M.; and Bresson, X. 2017. Geometric matrix
completion with recurrent multi-graph neural networks. In Proc. of
the Annual Conference on Neural Information Processing Systems
(NIPS), 3697–3707.
Niepert, M.; Ahmed, M.; and Kutzkov, K. 2016. Learning convo-
lutional neural networks for graphs. In International conference on
machine learning, 2014–2023.
Rao, N.; Yu, H.-F.; Ravikumar, P. K.; and Dhillon, I. S. 2015. Col-
laborative filtering with graph information: Consistency and scal-
able methods. In Proc. of the Annual Conference on Neural Infor-
mation Processing Systems (NIPS), 2107–2115.
Sak, H.; Senior, A.; and Beaufays, F. 2014. Long short-term mem-
ory based recurrent neural network architectures for large vocabu-
lary speech recognition. arXiv preprint arXiv:1402.1128.
Shang, J., and Sun, M. 2018. Local low-rank hawkes processes for
temporal user-item interactions. In Proc. of the IEEE International
Conference on Data Mining (ICDM).
Shuman, D. I.; Narang, S. K.; Frossard, P.; Ortega, A.; and Van-
dergheynst, P. 2013. The emerging field of signal processing
on graphs: Extending high-dimensional data analysis to networks
and other irregular domains. IEEE Signal Processing Magazine
30(3):83–98.
Wallace, B. 2004. Constrained optimization: Kuhn-tucker condi-
tions.
Wang, Y.; Du, N.; Trivedi, R.; and Song, L. 2016. Coevolutionary
latent feature processes for continuous-time user-item interactions.
In Proc. of the Annual Conference on Neural Information Process-
ing Systems (NIPS), 4547–4555.
Xu, H.; Wu, W.; Nemati, S.; and Zha, H. 2017. Patient flow
prediction via discriminative learning of mutually-correcting pro-
cesses. IEEE Transactions on Knowledge and Data Engineering
29(1):157–171.
Xu, H.; Farajtabar, M.; and Zha, H. 2016. Learning granger causal-
ity for Hawkes processes. In Proc. of the 33rd International Con-
ference on Machine Learning, 1717–1726.
Yang, Y.; Etesami, J.; He, N.; and Kiyavash, N. 2018. Non-
parametric hawkes processes: Online estimation and generalization
bounds. arXiv preprint arXiv:1801.08273.
Zhou, K.; Zha, H.; and Song, L. 2013. Learning social infectivity
in sparse low-rank networks using multi-dimensional Hawkes pro-
cesses. In Proc. of the 16th International Conference on Artificial
Intelligence and Statistics, 641–649.

