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ABSTRACT
Many types of event sequence data exhibit triggering and clus-

tering properties in space and time. Point processes are widely

used in modeling such event data with applications such as pre-

dictive policing and disaster event forecasting. Although current

algorithms can achieve significant event prediction accuracy, the

historic data or the self-excitation property can introduce biased

prediction. For example, hotspots ranked by event hazard rates can

make the visibility of a disadvantaged group (e.g., racial minorities

or the communities of lower social economic status) more apparent.

Existing methods have explored ways to achieve parity between

the groups by penalizing the objective function with several group

fairness metrics. However, these metrics fail to measure the fairness

on every prefix of the ranking. In this paper, we propose a novel

list-wise fairness criterion for point processes, which can efficiently

evaluate the ranking fairness in event prediction. We also present

a strict definition of the unfairness consistency property of a fair-

ness metric and prove that our list-wise fairness criterion satisfies

this property. Experiments on several real-world spatial-temporal

sequence datasets demonstrate the effectiveness of our list-wise

fairness criterion.
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1 INTRODUCTION
Many types of event sequence data exhibit triggering and clustering

properties in space and time. For example, after a large earthquake,

events of after-shocks usually occur in the following days or weeks

near the epicenter of the main shock [8]. Similarly, criminologists

have reported that 25% to 50% crime events are observed in a few ar-

eas of a city [17]. They have also demonstrated that certain types of

crime events such as burglaries are often reported repetitively from

the same neighborhood [2]. The time interval and spatial distance

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7998-4/20/08. . . $15.00

https://doi.org/10.1145/3394486.3403246

among events carry important information about the underlying

dynamics of a specific type of events.

Predicting and ranking the rate of events as a function of space

and time enables important applications. Typically, space is divided

into regions, time is divided into short intervals, and regions are

ranked based on the predicted event rates over a time window.

For example, in a predictive policing system, a city is divided into

geographic sub-regions such as grid cells or political boundaries. A

predictive algorithm is used to forecast the rates of crime events for

each region at each day based on historical crime events. According

to the predicted rates, police daily patrol activities can be adjusted

so that more resources are allocated to the regions with higher

risks. In practice, due to limited resources, regions are ranked by

the predicted hazard rates in each day and police activities are

directed to top-k regions, also known as hotspots [17].

Variations of point-process models [22, 23] have become very

popular for modeling event rates based on historic events. They

assume different forms of dependencies on the history. For exam-

ple, the Hawkes process [7, 14] assumes that the influences from

previous events are linearly additive towards the current event.

Such models are able to capture the temporal correlations between

events and are well-suited for inhomogeneous inter-event time

modeling. Spatial-temporal Hawkes models extend temporal mod-

els to predict the rate of events at a specific location and time.

Spatial heterogeneity in hazard rates can be characterized as base

intensities and the self-exciting effects can be modeled with a vari-

ety of temporal kernels. Model parameters can be estimated using

standard maximum likelihood estimators given training data, e.g.,

events observed before a specific time.

Although those predictive models improve event forecasting

accuracy, biased predictions may be introduced and amplified due

to factors such as data bias and the feedback loop of algorithms.

For example, time-stamped geo-tagged event data from Twitter

have been used for rapid flood mapping, damage assessment, and

situation awareness. However, it has been reported that higher

disaster-related Twitter-use communities tend to be of higher so-

cioeconomic status [33]. Prediction based on such data may exhibit

socioeconomic bias. Moreover, recent studies have focused on the

bias problem of event prediction in predictive policing. One po-

tential problem is that if the police only patrol areas with higher

estimated risks, there will likely be more arrests than in other ar-

eas, and then biased arrests may be further amplified through the

feedback loop.

While there have been some early explorations [12, 24, 28, 31]

in developing ranking fairness metrics that can be adopted by haz-

ardous event prediction, most of them focus on either measurement

of fairness or post-processing ranking list to satisfy a fair condition.

Hence, the ranking functions are not influenced by the fairness

metrics. A recent work [18] introduces demographic parity into

spatial-temporal crime prediction and directly uses it to penalize
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the likelihood function. The fairness metric enforces the amount

of police patrol allocated to each demographic group in selected

hotspots to be proportional to the percentage of that group in the

whole population. However, the fairness metric does not guarantee

group parity at any point in ranked regions.

In this paper, we propose a novel list-wise fairness criterion

for spatial-temporal point process, which can efficiently evaluate

the list ranking fairness. We also present a strict definition of the

unfairness consistency property of a fairness metric and prove that

our list-wise fairness criterion satisfies this property. We further

integrate the fairness criterion into the objective function and then

obtain a fairness-aware ranking function that can generate a fair

ranking list.We carry on experiments over several real-word spatial-

temporal datasets, and the results demonstrate the effectiveness

of our list-wise fairness criterion. We also discuss the scalability

of our method and propose a smoothed variation, which makes it

easier for optimization.

2 RELATEDWORK
Spatial-temporal Hawkes processes, which are capable of modeling

correlated spatial-temporal event sequences, have been widely used

in various applications including earthquake prediction [27], predic-

tive policing [18], and hazard rate prediction [7, 14]. Traditionally,

events are aggregated in discrete time intervals over a set of grid

cells. A regression model is learned to predict event occurrences in

each cell and time interval given spatial and temporal covariates,

and previous counts. However, these methods suffer from discrete

granularity in both space and time. In comparison with traditional

approaches, point processes show better prediction accuracy for

predicting event hazard rates and ranking event hotspots [16].

Machine learning and artificial intelligence (AI) systems exhibit

bias due to a number of factors including the human bias in training

data and the design of algorithm models. It is also well known that

machine learning and AI algorithms may reproduce and even am-

plify human biases and social inequities especially in applications

involving feedback loops such as predictive policing [10, 18]. There

are many definitions of fairness such as group parity [4], equalized

odds [9, 30], individual fairness [5], and counterfactual fairness [21].

Group parity and its variations are widely applied in classification

and regression tasks [3, 11, 29].

The impact of imposing fairness constraints to machine learning

and AI is dependent on the specific domain datasets, the specific

fairness definition, and the prediction algorithms. Most of the mod-

els and algorithms proposed to improve fairness fall into three

categories: pre-processing [15, 32], optimization at training time

[11, 30], and post-processing [6, 9]. Generally, training time opti-

mization, which is domain-specific, can achieve good performance

on accuracy and fairness measures and offers the flexibility to bal-

ance the trade-off between accuracy and fairness measures.

Recent studies have focused on the fairness problem of ranking.

Specifically, a fairness measure is proposed in [28] to compare the

distributions between two demographic groups at several prefixes

with a discount factor based on an inverse logarithmic function.

However, the definition of ranking fairness is heuristic with no

rigorous proof and only preliminary results are demonstrated. Fair-

ness constraints on rankings are formulated in [24], which uses

linear programming approaches to find rankings that maximize

user utility while provably satisfying a specified fairness constraint.

However, this approach still needs to sample the final rankings

rather than directly optimize the objective, which may be ineffi-

cient for large scale industry dataset. An auditing framework is

proposed [12] to measure search engine bias. The work focuses

on the identification of the sources of bias rather than the gener-

ation of a fair ranking list. A recent work [31] presents a ranked

group fairness criterion based on the statistical hypothesis testing.

The method can adjust a ranking list so that a minimal number

of instances in protected groups must appear in the top-k list to

guarantee a fair criterion. However, this post-processing algorithm

and the training of ranking function are independent and thus the

adjustment is limited. A variation of group parity is proposed in

[18] for top-K crime hotspots prediction. The fairness loss is in-

tegrated into the likelihood of event occurrences and the model

parameters are penalized to strike a balance between accuracy and

fair loss. However, the fairness metric does not guarantee group

parity at any point in the ranked list.

3 MOTIVATION
In this section, we first introduce the background of spatial-temporal

point process model for event prediction and then present the fair-

ness concerns on event prediction.

3.1 Ranking Prediction by Spatial-Temporal
Point Process

A collection of n events in an area (e.g., a city) during a time win-

dow [0,T ] is represented as a temporally ordered list T = {ek =
(xk , tk )}

n
k=1, where event ek happens at time tk and location xk ,

e.g., a pair of longitude and latitude. An event ek may be a crime

event reported from a victim or a disaster-related rescue request. In

many event prediction applications, an area is divided into grid cells

or political boundaries such as ZIP Codes. For example, disaster ar-

eas can be discretized into 30m by 30m square grid cells (resolution

of TM remote sensing image), 150m by 150m (size of a city block),

or larger. Let G denote the set of grid cells and д ∈ {1, 2, . . . ,m}

index allm cells in G. For each location xk , let дk denote the index

of the cell that covers this location.

A temporal event sequence at the дth grid cell can be modeled as

a Hawkes process [16, 18]. The process can be characterized via its

conditional intensity λд(t), which models the expected rate of the

event occurrences at the cell given the history of all the previous

events up to time t . The conditional intensity function is:

λд(t) = ηд +
∑

tk<t ,дk=д
θκω (t − tk ), (1)

where ηд > 0 is the base intensity of cell д, θ is the self-exciting

coefficient, and κω is the kernel function that captures the temporal

intensity triggered by recent events. A common choice of kernel

functions is an exponential kernel function with a bandwidth ω,
i.e., κω (t) = ω exp(−ωt).

The base intensity ηд can be modeled as a function of spatial

covariates/features, such as demographics [18], geological and so-

cioeconomic variables. Let f д denote the d-dimensional feature

vector for cell д, i.e., f д ∈ Rd . Commonly, the base intensity is



log-linear with the coefficients α and the feature vector f д , that is,

ηд = exp(α · f д). The base intensity can be inhomogeneous through

the space, which explains spatial variations of event hazards (e.g.,

disparate crime rates or flood hazards in different neighborhoods).

Given the observed historic event sequences T , the model pa-

rameters can be estimated by maximizing the log-likelihood [18],

or equivalently, minimizing the joint negative log-likelihood:

L(α , θ ,ω) = −

n∑
k=1

log(λдk (tk )) +
∑
д∈G

∫ T

0

λд(t)dt, (2)

where дk is the cell index for event ek .
To better capture correlations between multiple processes de-

fined on different grid cells, we can incorporate spatial proximities

in the form of graphs into Hawkes processes. Specifically, each

grid cell is a node and two nodes are connected by an edge if they

are neighborhoods. The graph is a proximity network of spatial

cells. Similar to [20, 23], a graph regularization is added to enforce

spatial smoothness of the intensities at each cell. Formally, the ob-

jective function of the spatial-temporal Hawkes process with graph

regularization is:

O(α , θ ,ω) = minL(α , θ,ω) + ρ{T−1
T∑
t=1

tr (Λ(t)⊤LΛ(t))}, (3)

where Λ(t) = [λ1(t), λ2(t), ..., λm (t)]⊤ is the vector of event rates

atm cells during a time window, ρ is the regularization parameter,

and L is the Laplacian matrix constructed on the graph.

For event forecasting, the model parameters estimated using

training data can be used to compute the intensities in eq. (1) at

each cell д and a given time t . A higher intensity means a larger

probability that an event will happen at its corresponding location.

In practice, the intensitiesΛ(t) in the list are ranked from the highest

to the lowest, and top-K hotspots may be selected at time t for
informing further activities such as police patrolling.

3.2 Fairness Concerns on Ranking
Our concern is that grid cells ranked by event hazard rates canmake

the visibility of a disadvantaged group even worse. For instance, the

disadvantaged groups can be racial minorities or the communities

of lower social economic status. Existing fairness metrics focus

on the group fairness averaged over the entire list such that the

average amount of attention received by each demographic group

should be fair. However, they do not compare the group fairness at

every point in the ranked list.

In table 1, we list a simple example to demonstrate that event rate

prediction may exhibit bias towards certain groups. Assume there

are 10 locations (e.g., grid cells), which are ranked by the predicted

event rates during a given time period. Each cell is associated with

2-dimensional demographic feature and each feature indicates the

population of one race in the cell. The column “Group” indicates

the type of majority race for each cell. For example, 1 means that

race 1 is the majority and 2 means race 2 is the majority in that cell.

Specifically, for cell 1 in the first row, the predicted hazard rate is

10.0, which is the highest. There are 10.0 persons of race 1 and 1.0

person of race 2 living in the area of cell 1.

If we use the traditional fairness metrics to evaluate the entire

list in table 1, it is fair. Specifically, we can see that the total numbers

Table 1: Example for ranking fairness.

Cell by Rank Intensity Group Race 1 Race 2

Cell 1 10.0 1 10.0 1.0

Cell 2 5.0 2 5.0 6.0

Cell 3 4.6 2 5.0 6.0

Cell 4 4.2 2 4.0 7.0

Cell 5 3.8 2 3.0 8.0

Cell 6 3.4 2 2.0 9.0

Cell 7 3.0 2 1.0 10.0

Cell 8 2.8 1 9.0 2.0

Cell 9 2.4 1 8.0 3.0

Cell 10 0.8 1 9.0 4.0

of population for race 1 and race 2 are the same, which is 56.0. Also,

there are six cells labeled as group 2 while four labeled as group

1. However, it is not fair at every point of the list. As we can see,

most of the locations on the top of the list are labeled as group

2, which means the ranker intends to rank group 2 higher than

group 1. Moreover, in reality, only top ranked cells receive sufficient

attentions. If we take top-5 locations into consideration, there are

80% of the locations labeled as group 2, which is also unfair for race

1. In this case, a more specific fairness criterion focusing on the

entire ranking list is needed.

4 LIST-WISE FAIRNESS CRITERION
In this section, we introduce our List-wise Fairness Criterion
for spatial-temporal point process. We first propose a series of

definitions to describe the unfairness consistency property of a

fairness metric and then prove that our metric satisfies this property.

4.1 Preliminaries
Let G be the instance space, e.g., a set of all m grid cells. Each

instance is associated with some sensitive features such as races

or social economic status. For simplicity, we assume there are two

sensitive features, such as race type one and race type two. Let Y

be the set of values for one race for all grid cells, and
˜Y be the set of

values for the other, respectively. The feature value of each instance

indicates the relevance of the instance with respect to that feature.

For example, if we define the feature as the race population in a

cell, y = 10.0 means 10.0 population of race type one and y = 0

means zero population of that type. Also, a larger y ∈ Y indicates

a larger representation of race type one.

At a specific time t , the intensity function λд(t) can be considered
as a mapping from instances G to R and be shortened as λд . For
every instance д ∈ G, we rank them by intensity function λд .
The final ranking list is denoted by д(1), ...,д(m), which satisfies

λд(1) ≥ ... ≥ λд(m)
. Let y1, ...,ym (yi ∈ Y) and ỹ1, ..., ỹm (ỹi ∈ ˜Y)

be the sensitive features associated with д1, ...,дm , respectively.

Denote Sm = {(д1,y1, ỹ1), ..., (дm,ym, ỹm )} the set of intensities

and features. Following [26], we assume that (дi ,yi , ỹi ) are i.i.d.

samples taken from a distribution PGYỸ over G × Y × ˜Y.

TheNormalizedDiscounted Cumulative Gain (NDCG) is awidely

used list-wise ranking metric to measure the ranking quality. It



is often used to measure if web search engine algorithms rank

most relevant documents at top ranks. In our case, we adopt its

formula to measure the relevance of a ranked list with respect to

sensitive feature values. Thus, we replace the relevance scores with

the sensitive feature values in the following definition.

Definition 1. Let P(r )(r ≤ 1) denote a discount function on rank-

ing positions. The intensity function λд is the ranker. The Dis-

counted Cumulative Gain (DCG) of the ranker λд with respect to a

sensitive feature Y using a discount function P(r ) is defined as:

DCG(λд,G,Y) =

m∑
r=1

y(r )P(r ). (4)

We can similarly define DCG for another sensitive feature
˜Y as

DCG(λд,G, ˜Y) =
∑m
r=1 ỹ(r )P(r ).

The ideal DCG (IDCG) is the best DCG value of any possible rank-

ing function with respect to a sensitive feature. Specifically, for the

sensitive group Y, we have IDCG(G,Y) = maxλ′д
∑m
r=1 y

′
(r )P(r ).

Thus, the Normalized DCG of intensity function λд on Sm with

discount function P(r ) is defined as:

NDCG(λд,G,Y) =
DCG(λд,G,Y)

IDCG(G,Y)
. (5)

NDCG are normalized scores ranging from 0.0 to 1.0 and thus

are cross-group comparable. A NDCG is a standard NDCG if the

discounting function is chosen to be the inverse logarithm decay

P(r ) = 1

log(r+1) . The choice of the base of the logarithm does not af-

fect NDCG since the normalization can cancel out constant scaling.

We use the natural logarithm in this paper. It is worth mentioning

that even though the discount function P(r ) is defined as a function
of positive integers r , it can be treated as a function of non-negative

real variable in the following sections. Thus, we can also consider

the corresponding derivative P ′(r ) and integral

∫
P(r )dr . In the

following section, we leave out the word "standard" and directly

use NDCG unless we emphasis the difference.

4.2 List-wise Fairness Criterion
We now propose our List-wise Fairness Criterion of ranked list

with respect to sensitive features. Intuitively, we can compare the

difference of NDCG scores with respect to different sensitive fea-

tures (e.g., racial groups). A disparity between NDCG scores in-

dicates a larger degree of unfairness between the racial groups.

A strict definition of our List-wise Fairness Criterion between

each pair of groups is:

F (λд,G,Y, ˜Y) = (NDCG(λд,G,Y) − NDCG(λд,G, ˜Y))2. (6)

Note that an ideal List-wise Fairness Criterion should sub-

stantially distinguish the ranking gain with respect to two groups

at any prefix of the ranking. Below we first give the formal defini-

tion that a ranker measured by a metric F is consistently unfair
between two groups. The definition describe the unfairness con-
sistency property of a fairness measure.

Definition 2. Let (д1,y1, ỹ1), (д2,y2, ỹ2), ... be i.i.d. instance-label
tuples taken from the underlying distribution PGYỸ over G×Y× ˜Y.

Given Sm = {(д1,y1, ỹ1), ..., (дm,ym, ỹm )} and intensity function

λд as the ranker. The ranker λд measured by a fairness metric F is

said to be consistently unfair between two groups if there exists

a negligible function
1 µ(N ) such that for every sufficient large N ,

with probability 1 − µ(N ),

F (λд,G,Y, ˜Y) > 0 (7)

holds for allm ≥ N simultaneously.

This definition indicates the unfairness consistency property

by a metric measuring the rank list. We then give a theorem to

show that our fairness metric indeed satisfies this property. For

simplicity, we present the theorem for features with binary values,

i.e., Y = {0, 1} and ˜Y = {0, 1}. It can be easily extended to general

cases where the values of Y and
˜Y are finite sets [26].

To begin with, suppose there exist another intensity function
ˆλд

that preserves the order
2
as original intensity function λд , then

we have NDCG(λд,G,Y) = NDCG( ˆλд,G,Y) by definition. Hence,

the NDCG is defined on an equivalent class of intensity functions

which can preserve the same order. We now introduce the concept

of canonical form.

Definition 3. Given an intensity function λд , we present a canon-
ical form of λд as:

ˆλд = Pr

G∼PG
[λG ≤ λд]. (8)

The benefit of using the canonical form intensity function is

that it satisfies the following property, which can be proven by

definition.

Proposition 4. For any intensity function λд , its canonical form
ˆλд preserves the order of λд and has uniform distribution on interval
[0, 1].

Now we give the following theorem:

Theorem 5. Given the canonical intensity function ˆλд , let y′(s) =
PrG∼PG [Y = 1 | ˆλG = s] and ỹ′(s) = PrG∼PG [Ỹ = 1 | ˆλG = s].
Assume y′(s) and ỹ′(s) are Hölder continuous in s . Then, unless
y′(s) = ỹ′ almost everywhere on interval [0, 1], the ranker λд mea-
sured by our List-wise Fairness Criterion is consistently unfair
between the groups with sensitive features Y and ˜Y.

Proof. We prove our unfairness consistency in theorem 5 by

adopting the technology provided by [26] which are used to prove

the property that a measure can distinguish ranking functions. We

first define the pseudo expectation N(m) and ˜N(m), which are

integrals to approximate the DCG, for the sensitive features Y and

˜Y respectively. We start with Y:

Definition 6. Assume Y = {0, 1}, and let y′(s) = PrG∼PG [Y =

1 | ˆλG = s], we define the pseudo expectation N(m) for the unnor-

malized DCG as:

N(m) =

∫ m

1

y′(1 − r/m)P(r )dr =m

∫
1

1/m
y′(1 − s)P(ms)ds, (9)

1
A function µ : N → R is negligible iff ∀c ∈ N, ∃n0 ∈ N such that ∀n ≥ n0 ,

µ(n) < n−c
.

2
Preserving the order means for ∀д1, д2 ∈ G, λд

1
≥ λд

2
implies

ˆλд
1
≥ ˆλд

2
.



with the substitution of integration r = ms . Suppose that F (x) =∫ x
1

P(r )dr and the probability p = Pr[Y = 1] > 0, we have the

normalized pseudo expectation E(m) as E(m) = N(m)/F (mp).

We first prove that the difference between the NDCG and its

pseudo expectation is relatively small with high probability by

lemma 7.

Lemma 7. Suppose p = Pr[Y = 1] > 0 and y′(s) = PrG∼PG [Y =

1 | ˆλG = s] is Hölder continuous 3 in s ∈ [0, 1]with constants a,C > 0.
Then

Pr[|NDCG(λд,G,Y) − E(m)| ≥ 5Cp−1m−min(a/3,1)] ≤ O(e−m
1/4

).

(10)

We then prove that the difference between the pseudo expecta-

tions for the NDCG of the two groups is much larger by lemma 8.

Lemma 8. Supposep = Pr[Y = 1] > 0 and lety′(s) = PrG∼PG [Y =

1 | ˆλG = s] and ỹ′(s) = PrG∼PG [Ỹ = 1 | ˆλG = s]. Then, unless
y′(s) = ỹ′ almost everywhere on interval [0, 1], there must exist an
integer K ≥ 0 and a constant B , 0, so that

|E(m) − ˜E(m) −
B

log
K m

| ≤ O(
1

log
K+1m

). (11)

The proofs of lemma 7 and lemma 8 are in appendix B. Thus, from

the two lemmas, and with the observation that

∑
m>N e−m

1/4

≤

O(N 3/4e−N
1/4

) ≤ O(e−N
1/5

), the ranker λд measured by our List-
wise Fairness Criterion is consistently unfair between two

groups with high probability. □

Remark: theorem 5 provides the consistent analysis of our

List-wise Fairness Criterion. It can consistently differentiate two
group in the ranking list provided by the intensity function. Thus,

we consider using it to penalize the objective function later in

section 5. By minimizing our List-wise Fairness Criterion, the
penalties affect the final intensity function to generate a fair ranking

list.

It is worth mentioning that in the Standard NDCG, the inverse

logarithm function is used as the discount function. If other func-

tions such as inverse polynomial P(r ) = r−β , β > 0 are used for

computing the NDCG, the unfairness consistency is not exactly

guaranteed. Also, an inverse polynomial decay with β > 1 might

not be appropriate when the list is huge, since the tail of the ranking

list may be omitted in calculation.

4.3 Cut-off Version
It is usually computational inhibitive the when calculate all the

instance in practice. Thus, we consider a cut-off version of our List-
wise FairnessCriterion F (λд,G,Y, ˜Y)@k by using theNDCG@k

with k = cm for some constant c ∈ (0, 1) in eq. (6). We also adopt the

discount function P̃(r ) = 1

log(r+1) if r ≤ k and P̃(r ) = 0 otherwise.

Note that it is not appropriate to define k as a constant independent

with list size m. The reason is the NDCG@k is bounded by the

partial summation, which cannot consistently cover the total rank-

ing list. Thus, k must grow unboundedly whenm goes to infinity.

In addition, by adopting k = cm, the unfairness consistency of

3
That is, for ∀s , s ′ ∈ [0, 1], |y′(s) − y′(s ′) | ≤ C ∥s − s ′ ∥a

F (λд,G,Y, ˜Y)@k holds under the conditions given in theorem 5.

The proof is similar to its full version in theorem 5.

5 LEARNING
In this section, we develop a penalized likelihood approach to in-

corporate fairness penalties into point process models. Trade-off

between event prediction accuracy and fairness can be achieved by

controlling the degree of fairness penalties in objective function.

5.1 Objective Function with List-wise Fairness
Criterion

The fairness penalties based on List-wise Fairness Criterion for

ranking grid cells with respect to sensitive groups over the total

training time period [0,T ] is defined as follows:

F (α , θ ,ω) =
1

T

T∑
t=1

(NDCG(λд(t),G,Y) − NDCG(λд(t),G, ˜Y))2.

(12)

When F = 0, the ranking list with respect to the two groups achieves

consistently fairness averagely over a time period.

More generally, suppose there are q types of sensitive features

and the i-th type of sensitive features f i contains ci groups, then
for ∀li , l

′
i ∈ ci , the total penalty is defined as follows:

F (α , θ,ω)=
1

T

q∑
i=1

∑
li>l ′i

T∑
t=1

(NDCG(λд(t),G,Yli )−NDCG(λд(t),G,Yl ′i ))
2,

(13)

where Yli is the l-th group of the i-th type sensitive features. For

example, sensitive features include race and gender. There are mul-

tiple types of race and different gender. When F = 0, for every type

of sensitive features and for each pair of feature groups, the ranker

achieves consistently fairness averagely over a time period.

Finally, we add the penalty F weighted by a trade-off parameter

γ to the objective function eq. (3) and minimize:

OPT = minL(α , θ,ω) + ρ{T−1
T∑
t=1

tr (Λ(t)⊤LΛ(t))} + γF (α , θ,ω).

(14)

Once we obtain α , θ and ω, we can directly calculate the intensities

for all grid cells by eq. (1) and present a fair ranking list.

5.2 Optimization and Scalability
The objective function with fairness penalties defined by eq. (14) is

non-differentiable since grid cells needs to be ranked by intensities

and a threshold is required for selecting top-k cells at each time

slot t . Thus, we adopt the Nelder-Mead simplex method [13] to find

a local minimum. We show the details how we apply this method

in appendix A.

It is well known that simplex method takes polynomial time com-

plexity, i.e.,O(nk ) in average [25], which is computational inhibitive

when the dataset is huge. Hence, we provide a smoothed variation

of our method, which uses a non-linear function to approximate

the rank and makes it differentiable.

As we introduced before, for the standard NDCG, we use the

inverse logarithm decay P(r ) = 1

log(r+1) as the discount function.



We first rewrite the standard DCG in the following form:

DCG(λд,G,Y) =

m∑
i=1

yi
log(R(i) + 1)

, (15)

where R(i) is the rank position of the cell дi by the ranker, inten-

sity function λд . The DCG is non-smooth mainly because of the

non-continuous mapping from the intensity score λдi to the rank

position R(i). Specifically, the rank position can be defined in the

following form:

R(i) = 1 +
∑
j,i

I {λдi −λдj <0} . (16)

To deal with this problem, we follow [19] to revise the discount

function so that it becomes a continuous function of the intensities.

Thus, we have the approximate rank position R̃(i) as:

R̃(i) = 1 +
∑
j,i

exp(−δ (λдi − λдj ))

1 + exp(−δ (λдi − λдj ))
, (17)

where δ is the hyper-parameter which is often set dynamically like

the decay of learning rate. A larger δ leads to a better approximation

of rank position. However it increase the difficulty of optimization

due to the stronger degree of nonlinearity. When λдj ≪ λдi , the
non-linear part approaches zero, thus the position hardly changes.

Integrating the approximate rank position eq. (17) into eq. (15), we

obtain the smoothed DCG. The smoothed DCG can be optimized

by gradient based methods, which makes the computation faster

and the model scalable. Nevertheless, we have to mention that this

smoothed method is not suitable for the cut-off version NDCG@k.

In addition, the smoothedmethod cannot guarantee the unfairness
consistency property we introduced before.

It is worth mentioning that our List-wise Fairness Criterion
is not limited to spatial-temporal point processes, in fact, it can

be extended to other ranking problems. For example, suppose we

recommend a candidate list and the candidates may have sensitive

features such as gender and race. Our fairness metric can be applied

to either binary or finite sets of features. The computational com-

plexity increases when the list is huge (e.g., a million). In this case,

our method using the smoothed DCG can tackle the computation

challenge and we can obtain an approximately fair ranking list.

6 EXPERIMENT
In this section, we introduce the experiments and results.

6.1 Data
We evaluate our list-wise fairness criterion on three open sourced

real-world datasets detailed in table 2. Specifically, the Portland
dataset

4
[17] is provided by 2017 NIJ Crime Forecasting Challenge

5

that tasks participants to predict the spatial locations with highest

numbers of crime related calls in Portland, OR. It contains a list of

events with geographic coordinates, timestamps, and the types of

events such as burglary, street crime, and auto theft from March,

1, 2012 to February 28, 2017. In our setting, a unit time slot t is a
day. Each event is assigned to one of equal sized regular rectangle

grids based on the longitude and latitude. In the experiments, we

4
https://github.com/gomohler/crimerank

5
https://nij.ojp.gov/funding/real-time-crime-forecasting-challenge

Table 2: Dataset description.

Dataset Events Geo-Type Unique-IDs Time Groups

Portland 166K Grid 398 1916d 2

Dallas 201K Grid 303 853d 3

Houston 1182 ZIP Code 106 26h 2

only use the street event data and we simulate the race populations

for white and Hispanic/Latino as the sensitive features, which is an

extreme case. We first learn the model without fairness penalties

to obtain a ranked list of locations, and assign the population for

white as 1 tom in the order from high to low andm to 1 for the

Hispanic/Latino. The Dallas dataset 6 in Kaggle comes from the

Dallas Police Department containing detailed incidence reports for

around 3 years at Dallas, Texas. We adopt the similar settings for

Portland dataset to specify the locations that the events belong to.

For the race population feature, we count the number of events for

complainants in three races (black, white, and Hispanic/Latino) and

regard them as the population of that location grid. The Houston
dataset

7
is a crowdsourcing dataset obtained from a Google doc

which contains rescue requests for 3 days around Harris County

in Greater Houston Area during the Hurricane Harvey disaster. In

this dataset, a time slot t is an hour and we use the ZIP Code as the

location id. We get the race population statistics from American

FactFinder
8
. We use the populations of white and Hispanic/Latino

as the sensitive features.

For Portland and Dallas datasets, we use the first 200 days for

training and the days from 201 to 400 for testing given the huge

number of events, while for Houston dataset we adopt the first 14

hours for training and the rest for testing. For geometric settings

such as graph regularizers in eq. (14), we assume that each location

is a node in a graph and adjacent location nodes are connected. In

training, we use cut-off version of our list-wise fairness criterion as

the fairness penalties with NDCG@50 to improve computational

efficiency. Since the optimization algorithm only converges to local

minimal, we run several times with different initialization and

present the best results.

6.2 Evaluation Metrics
We use several metrics to evaluate both prediction performance

and fairness influence by adopting our list-wise fairness criterion.

6.2.1 Fairness Evaluation Metrics.

• NDCG@k: We directly compare the NDCG@50 scores of

different groups since we use them in training. A smaller

difference indicates a fairer prediction.

• FairLoss: We apply the fairness penalties that we define in

eq. (14) to the test data. A smaller fairness loss indicates a

fairer ranking list.

• Patrol@k: We use the fairness metric defined in [18], which

is the ratio of the summation of population in the top-k

6
https://www.kaggle.com/carrie1/dallaspolicereportedincidents

7
https://data.world/sya/harvey-rescue-doc

8
https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml
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Figure 1: The NDCG@50 for different racial groups before and after adding list-wise fairness penalties.

locations over that in the total list per race group. Specifically,

Patrol@k =

∑k
i=1 y(i)∑m
i=1 ym

, (18)

and we just replace the NDCG with this metric and the

difference between two groups should still be averaged over

time slot t and types i in eq. (13). We name it List-sum
Fairness Criterion, in contrast to our List-wise Fairness
Criterion. In the experiments, we adopt k = 50 to keep

uniform standard with the former setting.

6.2.2 Prediction Performance Evaluation Metrics.

• Correlation: We use the Pearson correlation coefficient be-

tween the predicted intensity list Λ(t) and the ground truth,

which is the list of numbers of events at time slot t , to eval-

uate the prediction performance. It is between 1 and −1,

where 1 means total positive linear correlation, 0 means no

linear correlation, and −1 represents total negative linear

correlation according to the Cauchy–Schwarz inequality.

• TestLoss: It is the test loss without fairness penalties in

eq. (14), which is the log-likelihood of point process in eq. (2)

that indicates the probability that existing history event T

has happened and no events happen in [tn, t).

• PAI@k: Predictive Accuracy Index (PAI) is widely used to

measure the percentage of crime events in the top-k locations

[17, 18] and has the following form:

PAI@k =
events in k locations

total events

·
total area

area of k locations

. (19)

Since PAI@k is area normalized, a value of 1 indicates ran-

dom predictions. We also apply it to the Houston rescue

dataset. The value of k is chosen by the police resources

or the rescue resources and we provide two choices in the

experiments, PAI@15 and PAI@50.

6.3 Fairness over Groups
We plot both the neutral (before adding our list-wise fairness penal-

ties) and fair scenarios of our model by measuring NDCG@50 on

test data per group over all three datasets in fig. 1. We can see that

in general, this list-wise fairness criterion is effective and the differ-

ences between the groups become smaller after adding our list-wise

fairness penalties, and all the scores become closer to each other to

approach the ideal case with the fairness penalties close to 0. The

performance on Houston dataset is not as good as the former two

due to data sparsity. In particular, there are much fewer events in a

little smaller number of unique ZIP Codes as described in table 2.

Besides the time slot t is an hour, and thus the events/time that

represents the temporal sparsity is also at a low level. Therefore, the

locations most influenced by Hurricane Harvey might have much

higher intensities and much more rescue requests than others. As a

result, it requires a much larger fairness penalty to change the order

of the ranking list. This leads to the weak performance in terms of

the fairness metrics and makes it hard to balance the NDCG@50

values between two groups. In addition, for the neutral scenario,

the difference of the NDCG@50 values between two groups for

Houston data is relatively smaller than others, which indicates

the fairness penalty unscaled with γ is relatively small. That also

increases the difficulty in obtaining an extremely fair ranking list.

6.4 Fairness vs. Prediction Performance
Wemeasure the prediction performance and present the correlation

and PAI@k before and after adding our list-wise fairness penalties

in table 3. A higher correlation coefficient indicates stronger corre-

lation between the predicted intensity list and the ground truth of

the number of events, which finally represents the point process

model’s prediction accuracy. A higher PAI@k does not reflect the

ranking accuracy of the intensity list according to the definition;

however, it represents a higher predicted number of independent

events at top-k locations which is useful in practice with limited

police and rescue resources.

From the table, we can see that at first, the prediction perfor-

mance is influenced when we incorporate the fairness in objective

functions. The ranking prediction performance represented by the

correlation is affected to a large extent. However, either PAI@15

or PAI@50 still keeps a higher level. This demonstrates that most

of the hotspots is still on the top of the predicted ranking list. It

is worth mentioning that although there is a significant cost in

considering the list-wise fairness, the PAI value is not only much

higher than the random case, which is 1, but also potentially even

more accurate than human analysis.
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Figure 2: Fairness-accuracy curves for list-wise and list-sum fairness.

Table 3: Average prediction performance before and after
adding list-wise fairness penalties.

Dataset Accuracy Measure

Results

Before After

Portland

PAI@15 344.0795 263.9681

PAI@50 194.2702 95.9875

Correlation 0.6614 0.0030

Dallas

PAI@15 156.3209 21.1041

PAI@50 105.2752 16.4861

Correlation 0.6550 0.1534

Houston

PAI@15 455.4241 400.3325

PAI@50 179.1580 171.0044

Correlation 0.3993 0.3367

6.5 Comparison between List-wise and
List-sum Fairness

Similar to [1], we investigate the trade-off between accuracy and

fairness for two different types of fairness penalties including the

List-wise Fairness and List-sum Fairness. We apply these two

different fairness metrics in the training stage, and adjust the trade-

off parameter of the fairness γ in the range 10
s , s = [0, 1, 2, ..., 8].

The x axis is the test loss without considering fairness penalties

and it indicates the model prediction performance. A lower test

loss value represents better prediction performance. The y axis is

the fairness penalty based on our list-wise fairness criterion and is

calculated over test data. A lower value means a fairer ranking list.

According to the results shown in fig. 2, we can see that for all

the three datasets, the degree of the fairness of the model increases

as the trade-off parameter γ becomes larger, resulting in a worse

prediction. Also, with the same level of the fairness loss, our List-
wise Fairness achieves better prediction performance than the

List-sum Fairness in general. This indicates that our list-wise

fairness criterion is more efficient and less costly in the optimization.

In addition, note that the fairness loss for Houston data is relatively

smaller than others as we described in section 6.3. List-wise fairness

have resulted in consistently more efficient curves with different

values of trade-off parameter γ than list-sum fairness.

Figure 3: Case study.

6.6 Case Study
We visualize the top-20 detected hotspots before (blue) and after

(red) adding our list-wise fairness penalties in fig. 3. The circle

of both blue and red indicates that the location are captured in

both ranking lists. The background
9
shows the population of His-

panic/Latino ranked by percentage at Harris County in the Greater

Houston Area, Texas. A total of 5 locations has changed in the top-

20 list and it is obvious that they switch to the locations with more

Hispanic/Latino population in general. Even though the Houston

dataset is sparse and it is hard to obtain a fair ranking list as we

introduced in section 6.3, the results are still visible in the figure. It

is worth mentioning that the east of Harris County, where several

hotspots are detected in both neutral and fair ranking lists, is the

worst-hit area suffering Hurricane Harvey. Since the model still

9
Downloaded from the website: http://www.houstonstateofhealth.com/



keeps these top predicted locations, it demonstrates the effective-

ness of the spatial-temporal point process in predicting the future

events. Similar results are obtained on the white population map

and presented in appendix D due to space limit.

7 CONCLUSION
In this paper, we present a novel list-wise fairness criterion to obtain

a fair ranking list for predicting top-k locations via spatial-temporal

point process. We propose a strict definition of the unfairness con-

sistency property of a fairness metric and prove that our list-wise

fairness criterion satisfies this property. Extensive experiments on

the real-world datasets demonstrate the effectiveness of the list-

wise fairness criterion. Future work includes extending our list-wise

fairness to other fields such as scalable recommender system and

developing efficient methods for fairness optimization.
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A EXPERIMENT SETTING
We apply the Nelder-Mead simplex method inMATLAB

®

by using

the function “fminsearch”
10
, which can find local minimum of un-

constrained multivariable functions using derivative-free method.

Specifically, the code contains three parts: a script file that set all

the variables and initials such that apply the "fminsearch" over

objective function; a function file that is exactly the objective; and

another function file calculates the log-likelihood, graph regularizer

and the fairness penalties. We initialize the parameter as α = 0,
θ = 0.8, and ω = e−2 for all the datasets. We set geometric trade-

off parameter ρ = 1 and vary the fairness trade-off parameters

as γ = 10
s
, s = [0, 1, 2, ..., 8]. We follow [18] to define the fair

model learned with γ = 10
8
and the neutral model without fairness

penalties(γ = 0). The other experiments settings about datasets are

introduced in section 6.1.

We show the convergence curve of the algorithm in fig. 4 on

Portland Dataset. We can see that the method works well and the

fairness loss, correlation and the value of objective finally stably

converge to a local minimal.
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Figure 4: Convergence of the Algorithm on Portland
Dataset.

B PROOFS OF THE LEMMAS
In this section, we present the proofs of lemma 7 and lemma 8. We

first give two key claims that are useful to prove lemma 7, and

then provide the proof of lemma 8. The proofs of claims are in

appendix C.

B.1 Proof of Lemma 7
We first give two key claims.

Claim 9. Suppose that F (x) =
∫ x
1

P(r )dr and the probability
p = Pr[Y = 1] > 0. For any sufficiently large m, the following
inequality

|NDCG(λд,G,Y) −
DCG(λд,G,Y)

F (mp)
| ≤ O(m−1/3), (20)

holds with probability (1 − 2e−2n
1/3

).
10
https://www.mathworks.com/help/matlab/ref/fminsearch.html

Claim 10. Suppose that F (x) =
∫ x
1

P(r )dr andy′(s) = PrG∼PG [Y =

1 | ˆλG = s] is Hölder continuous in s ∈ [0, 1] with constants a,C > 0.
Then,

|

m∑
r=1

y′(1 − r/m)P(r ) − N(m)| ≤ Cm−a/3F (m) + 10. (21)

Proof. Let G be the instance space and д1, ...,дm (дi ∈ G) be

them locations i.i.d. drawn from underlying distribution PG . Let

x(r ) = ˆλд(r ) and we have x(1) ≥ x(2) ≥ ... ≥ x(m) by definition.

According to the Chernoff boundwhich is a special case of Bernstein

inequalities, for each r we have |x(r ) − (1 − r/m)| > m−1/3
with

probability Q = 2e−2m
1/3

. Then, a union bound over r yields

Pr[∀r ∈ [m], |x(r ) − (1 − r/m)| ≤ n−1/3] ≥ 1 −mQ . (22)

Sincey′(s) is Hölder continuous in s ∈ [0, 1]with constants a,C > 0,

we have:

Pr[|

m∑
r=1

(y′(x(r ))P(r )−y
′(1−r/m)P(r ))| ≤Cm−a/3

m∑
r=1

P(r )]≥ 1−mQ .

(23)

Considering claim 10 and eq. (23) together, we obtain:

Pr[|

m∑
r=1

y′(x(r ))P(r ) − N(m)| ≤ 2Cm−a/3F (m) + 10] ≥ 1 −mQ .

(24)

Considering the fact that y′(s) = PrG∼PG [Y = 1 | ˆλG = s] =

E[Y | ˆλG = s], hence
∑m
r=1 y

′(x(r ))P(r ) is the expectation of the

DCG(λд,G,Y) =
∑m
r=1 y(r )P(r ) conditioned on x(1), ..., x(m). Note

that conditioning on x(1), ..., x(m), y(r )(r = 1, ...m) are independent.

Thus, since that д1, ...дm are arbitrary and for ∀r , (P(r ))2 ≤ P(r ),
by applying Hoeffding’s inequality which is another special case of

Bernstein inequalities, we have for ∀ϵ > 0,

Pr[|DCG(λд,G,Y) −

m∑
r=1

y′(x(r ))P(r )| ≥ ϵ] ≤ 2 exp(−
2ϵ2

F (m)
).

(25)

Let ϵ = F (m)2/3 and combine eq. (24) and eq. (25), we obtain

Pr[|DCG(λд,G,Y)−N(m)|>2Cm−a/3F (m)+2F (m)2/3]≤mQ+2e−2F (m)1/3 .

(26)

Thus,

Pr[|
DCG(λд,G,Y)

F (mp)
−N(m)|≥4Cp−1m−min(a/3,1)]≤mQ+2e−2F (m)1/3 ,

(27)

and the lemma 7 is proved by combining claim 9 and eq. (27). □

B.2 Proof of Lemma 8
We first quote two propositions from [26].

Proposition 11. (Claim 29 at [26]) Given a fixed integer k ∈

N∗ = {0} ∪ N. For any sufficiently large n,∫
1

2

n

| logk x |dx

(log(nx))k+1
≤ O(

1

log
k+1 n

), (28)

and



Proposition 12. (Claim 30 at [26]) Span({loдkx}k≥0), is dense
in L2[0, 1].

Proof. Let ∆y′(s) = y′(s) − ỹ′(s). Note that F (mp) = Li(mp +
1), where Li(·) is the offset logarithmic integral function and has

the property Li(n) ∼ n
logn . Hence, given the normalized pseudo

expectation E(m) in definition 6 and the observation that |∆y′(s)| ≤
1, we obtain:

E(m) − ˜E(m) =
m

Li(mp + 1)

∫
1

1

m

∆y′(1 − s)ds

log(1 +ms)

=
m

Li(mp + 1)

∫
1

2

m

∆y′(1 − s)ds

log(1 +ms)
+O(

1

Li(m)
). (29)

By expanding
1

log(1+ms) atms , we have:

|

∫
1

2

m

∆y′(1−s)ds

log(1+ms)
−

∫
1

2

m

∆y′(1−s)ds

logm+log s
|≤

∫
1

2

m

ds

ms log2(ms)
≤O(

logm

m
),

(30)

and by expanding
1

logm+log s at logm, we obtain the following

|

∫
1

2

m

∆y′(1−s)ds

logm+log s
−

u∑
z=1

(−1)z−1

log
zm

∫
1

2

m

∆y′(1 − s) logz−1 sds |

=|

∫
1

2

m

∆y′(1−s) logu sds

(logm+εm,s )u+1
|≤

∫
1

2

m

|∆y′(1−s) logu s |ds

(logm+log s)u+1
≤O(

1

log
u+1m

)

(31)

holds for ∀u ∈ N∗, where εm,s ∈ (log s, 0) and we obtain the last

inequality by proposition 11. Also, by proposition 12 we known

that unless ∆y′(s) = 0 almost everywhere, there exist a constant

k ∈ N∗ and a non-zero constant B so that

(−1)k
∫

1

0

∆y′(1 − s) logk sds = 0. (32)

Assume K is the smallest k satisfying eq. (32) and note that∫ 2

n

0

log
k xdx = k!

k∑
i=0

(−1)k−i
x logi x

i!

�����
2

n

0

= O(
log

k n

n
), (33)

we finally have the following inequality by combining all the equa-

tions above:

|E(m) − ˜E(m) −
B

log
K m

| ≤ O(
log

K m

m
) +O(

1

log
K+1m

)., (34)

and that completes the proof of lemma 8. □

C PROOFS OF THE CLAIMS
C.1 Proof of Claim 9

Proof. Let w =
∑m
(дi ,yi )

I [yi = 1] represent the number of

yi = 1 in the dataset. Considering i.i.d. sampling and the definition

Pr[Y = 1] = p, by Chernoff bound we obtain:

Pr[|w/m − p | > m−1/3] ≤ 2e−2m
1/3

. (35)

Hence, with probability larger than 1 − 2e−2m
1/3

, we have:

|NDCG(λд,G,Y)−
DCG(λд,G,Y)

F (mp)
|≤|

DCG(λд,G,Y)

w
−
DCG(λд,G,Y)

F (mp)
| ≤

DCG(λд,G,Y)·max(|
1

F (m(p−m−1/3))
−

1

F (mp)
|,|

1

F (m(p+m−1/3))
−

1

F (mp)
|).

(36)

Based on the observation that DCG(λд,G,Y) ≤ F (m) and the Taylor

expansion of
1

F (m(p±m−1/3))
atmp, claim 9 is proved. □

C.2 Proof of Claim 10
Proof. Based on the fact that |P ′(r )| and P(r ) are monotone

decreasing functions and P(1) + |P ′(1)| < 10, we have:

|

m∑
r=1

y′(1−r/m)P(r )−N(m)|=|

m∑
r=1

y′(1−r/m)P(r )−

∫ m

1

y′(1−s/m)P(s)ds |

=|

m−1∑
r=1

∫ r+1

r

(
y′(1 − r/m)P(r ) − y′(1 − s/m)P(s)

)
ds | + y′(0)P(m)

≤|

m−1∑
r=1

∫ r+1

r
y′(1 − s/m)(P(r ) − P(s))ds |

+

m−1∑
r=1

∫ r+1

r
|y′(1 − r/m) − y′(1 − s/m)|P(r )ds + y′(0)P(m)

≤

m−1∑
r=1

∫ r+1

r
|P(r ) − P(s)|ds +Cm−a/3

m−1∑
r=1

P(r ) + P(m)

≤

m−1∑
r=1

|P ′(r )|+Cm−a/3F (m)+P(m)≤Cm
−a/3F (m)+|P ′(1)|+

m∑
r=2

|P ′(r )|+P(m)

≤Cm−a/3F (m)+ |P ′(1)|+P(1)−P(m)+P(m)≤Cm−a/3F (m)+10.

(37)

□

D ADDITIONAL CASE STUDY FIGURE
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