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Abstract—Hawkes processes have become very popular in
modeling multiple recurrent user-item interaction events that
exhibit mutual-excitation properties in various domains. Gen-
erally, modeling the interaction sequence of each user-item
pair as an independent Hawkes process is ineffective since the
prediction accuracy of future event occurrences for users and
items with few observed interactions is low. On the other hand,
multivariate Hawkes processes (MHPs) can be used to handle
multi-dimensional random processes where different dimensions
are correlated with each other. However, an MHP either fails to
describe the correct mutual influence between dimensions or be-
come computational inhibitive in most real-world events involving
a large collection of users and items. To tackle this challenge, we
propose local low-rank Hawkes processes to model large-scale
user-item interactions, which efficiently captures the correlations
of Hawkes processes in different dimensions. In addition, we
design an efficient convex optimization algorithm to estimate
model parameters and present a parallel algorithm to further
increase the computation efficiency. Extensive experiments on
real-world datasets demonstrate the performance improvements
of our model in comparison with the state of the art.

Index Terms—Hawkes Process; Kernel Smoothing; Sequential
Data

I. INTRODUCTION

Hawkes processes have become very popular in modeling
recurrent user-item interaction events that exhibit mutual-
excitation properties in various domains [1], [2]. For example,
Hawkes processes can be used to model user behaviors in
online services, where the interaction of a user with an
item such as visiting a website or watching a movie may
trigger future interactions with other correlated items. Recent
approaches [3], [4] treat the event occurrences of each user-
item pair as a point process and predict the next occurrence
of user-item interaction based on previous interactions. Ac-
curate modeling user-item interactions may have significant
economic impact on online platforms such as revenue boost
due to targeted advertising.

Formally, the Hawkes process for modeling an interaction
sequence of a single user-item pair (u, i) can be characterized
by parameters such as a base intensity and a self-exciting
coefficient that captures the influence of each previous event.
Intuitively, m-by-n Hawkes processes can be used to model
interaction sequences for m users and n items, where the base
intensities and the self-exciting coefficients are represented
as m-by-n matrices, respectively. Since users and items can

usually be grouped into a limited number of clusters, we can
assume that each parameter matrix has a low-rank structure.
However, the prediction accuracy of future event occurrences
for users and items with few observed interactions is low since
the point processes are independent of each other [3]. In fact,
only a few recurrent events such as purchases are observed
for a majority of pairs of users and items in many large-scale
real-world scenarios.

One way to alleviate the cold-start issue is to incorporate
auxiliary features such as user demographics and item content
features. For example, a coevolutionary model [5] takes advan-
tage of auxiliary features such as item genres and incorporates
the former events of all user-item pairs with different weights.
The time prediction performance has been improved since
more data are used to fit the model parameters of each user-
item pair, but the item prediction performance has decreased
due to the combination of the events from all user-item pairs.

On the other hand, a multivariate Hawkes process
(MHP) [6], [7] can be used to handle a multi-dimensional
(e.g., N = m×n) random process where different dimensions
are correlated with each other. Specifically, the conditional
intensity for the i-th dimension is characterized by the base
intensity and the linear combination of the influences of events
occurred in every other dimension on the i-th dimension.
Extensive research [8]–[11] has focused on estimating the
N ×N excitation matrix of a multivariate process for various
inference tasks. However, an MHP either fails to describe the
correct mutual influence between dimensions or becomes com-
putational expensive in most real-world applications involving
a large collection of event sequences [10], [12], [13].

In this paper, we propose local low-rank Hawkes processes
to model large-scale user-item interactions, which efficiently
captures the correlations of Hawkes processes in different
dimensions. Specifically, a Hawkes process is used to model
the interaction sequence of each user-item pair. The parameter
matrix for all processes, such as the base intensity matrix
and self-exciting coefficient matrix, is assumed to behave
as a low-rank matrix in the neighborhoods of certain user-
item combinations. Each parameter matrix is expressed as a
smoothed aggregation of several low-rank matrices, which ap-
proximates the parameters in a local neighborhood. We adopt
non-parametric kernel smoothing to aggregate several local
models into a unified model approximation. Based on the local



low-rank approximation, the Hawkes processes for all user-
item pairs are correlated due to the similarities between local
mappings of the parameter matrices. In addition, we design
an efficient convex optimization algorithm to estimate model
parameters and present a parallel algorithm to further increase
the computation efficiency. Extensive experiments on real-
world datasets demonstrate the performance improvements of
our model in comparison with the state of the art.

II. RELATED WORK

Local low-rank matrix completion with kernel smooth-
ing [14] has been applied to matrix factorization, in which
the observed ratings are formulated as a matrix and simulated
with several local mappings. Each local mapping is assumed
to be low-rank and the missing ratings are reconstructed with
a non-parametric regression of those mappings. Previous work
[14] mainly focuses on two-dimensional matrix factorization
without the temporal dimension. Our work is modeling a
sequence of events and the objective function is completely
different from the mean squared loss of ratings in matrix
completion tasks. In addition, we use the trace norm to enforce
the low-rank assumption and the previous work [14] explicitly
decomposes a matrix to the product of two low-rank matrices.
Variations of matrix completion methods [15]–[17] are widely
applied in recommender systems.

Hawkes processes [6] can be used in a variety of applica-
tions such as inferring granger causality [11], modeling patient
records in smart health [18], and predicting online social ac-
tivities [1]. For example, a multi-dimensional Hawkes process
has been proposed by Zhou et al. [1] to learn the social event
diffusion in sparse low-rank networks. A multivariate Hawkes
process has further been proposed by Farajtabar et al. [2] to
capture both endogenous and exogenous event intensities in
social network events. Limitations of the multivariate Hawkes
process such as the computational inefficiency for modeling
real-world events have been studied in [10], [12], [13].

For modeling large-scale user-item interactions, previous
work [3] simulates the temporal events of (u, i) pair as a one-
dimensional Hawkes process and assumes that all user-item
pairs are independent. The intensity of each Hawkes process
is estimated based solely on the individual pair’s observed
sequence. The performance of the method degrades when there
are no sufficient observed events for an individual (u, i) pair.
We consider the approach a point to point intensity estimation.

A coevolutionary latent feature process has been proposed
in [5], which constructs interdependent Hawkes processes
by integrating additional features such as item features, user
features, and interaction features between users and items. The
intensity of the events of each user-item pair is estimated by
aggregating the influences of all previous events of other user-
item pairs weighted by user and item similarities. Hence, the
time prediction accuracy improves since a large number of
events are used to simulate only one pair’s intensity and a
huge amount of auxiliary feature information is incorporated.
However, the item rank prediction becomes worse because the

individual preferences are influenced by the general prefer-
ence. We consider the approach a matrix to point intensity
estimation.

Our model is different from others in that we assume a
local low-rank structure in user-item dimension, which models
the intensity for one (u, i) pair as the aggregation of several
neighbors. The smoothing kernels are used to evaluate the
similarities between these neighbors and the target (u, i)
pair. The final estimation of the target (u, i) pair’s intensity
integrates the influences of neighbors with different weights,
which we consider a neighbors to point intensity estimation.

III. MODEL

In this section, we introduce the local low-rank Hawkes
process.

A. Background on Hawkes Process

A temporal point process is a random process [19], [20]
and the realization of the process consists of a list of discrete
temporal events T = {ti}ni=1. It is basically a counting process
that counts the cumulative number of events {N(t), t ≥ 0}
occurring right before time t. A counting process is also
a submartingale, i.e., E[N(t)|Tt′ ] ≥ N(t′) for all t > t′,
where Tt′ = {ti|ti < t′}ni=1 denotes the history up to
but not including time t′. A temporal point process can be
characterized by the conditional intensity function λ(t), which
models the occurrence of the next event given all the previous
events.

The functional form of the intensity function characterizes
the temporal point process. For example, the intensity of
a homogeneous Poisson process is constant over time, i.e.,
λ(t) = η ≥ 0. Alternatively, the Hawkes process, a conditional
Poisson process, is particularly useful for modeling the mutual
excitation between events. For example, the intensity can be
defined as:

λ(t) = η + α
∑
ti∈Tt

κσ(t− ti), (1)

where κσ(t) := exp(−t/σ) is an exponential kernel function
capturing temporal dependencies, η ≥ 0 is a base intensity
capturing the long-term incentive to generate events, and
α ≥ 0 is the coefficient that magnifies the influence of each
previous event.

Given a collection of events between m users and n items,
the occurrences of user u’s interaction events with item i can
be modeled as a self-exciting Hawkes process [6], i.e.:

λ(u,i)(t) = Hu,i + Au,i

∑
t
u,i
j ∈T

u,i
t

κσ(t− tu,ij ), (2)

where H denotes an m × n matrix with the (u, i)-th entry
equal to the non-negative base intensity for user-item pair
(u, i), and A denotes an m×n matrix with the (u, i)-th entry
equal to the self-exciting coefficient for user-item pair (u, i).
The sequence T u,it = {tu,ij |t

u,i
j < t}nj=1 denotes the set of

historic events induced between user u and item i up to but
not including time t. In traditional approaches [3], [4], the two
parameter matrices H and A are assumed to have low-rank
structures.



A univariate Hawkes process can be extended to a multi-
variate Hawkes process [6], [7] to handle a multi-dimensional
(e.g., m× n) random process where different dimensions are
correlated with each other. However, in most real-world events
involving large dimensions m and n, the parameter estimation
of an MHP becomes inefficient [10], [12], [13].

B. Local Low-Rank Hawkes Process

Assuming that the mapping from user-item pairs to param-
eters is slowly varying, the parameter matrices H and A for
all user-item pairs s = (u, i) ∈ [m]× [n] can be characterized
by a smoothed combination of multiple low-rank matrices in a
way similar to [14]. Specifically, we assume that there exists a
metric over the user-item space [m]×[n]. The distance between
pair s1 = (a1, b1) and pair s2 = (a2, b2) is denoted by
d(s1, s2) = d((a1, b1), (a2, b2)), which reflects the similarity
between rows a1 and a2 and columns b1 and b2. We assume
that there is a set of q < m · n anchor user-item pairs and
each of them is associated with a base intensity matrix Hsτ

and a self-exciting coefficient matrix Asτ , τ = 1, 2, ..., q.
If d(s1, s2) is small, Hs1 and As1 are similar to Hs2 and
As2 , respectively, by their spatial proximity in the embedding
Rm×n. Typically, for an anchor pair sτ = (aτ , bτ ) ∈ [m]×[n],
the neighborhood {s′ : d(sτ , s

′) < h} in the original matrices
H and A can be approximated by the corresponding entries
of matrices Hsτ and Asτ .

Furthermore, we recover the mapping parameter matrices
H and A from aggregating a set of q < m · n matrices
without imposing a specific function form. Following common
non-parametric approaches, we define a smoothing kernel
Kh(s1, s2), s1, s2 ∈ [m]× [n] for user-item pairs, which is a
non-negative symmetric unimodal function parameterized by a
bandwidth parameter h > 0. There are many popular choices
of smoothing kernels, such as the Gaussian Kernel, Logistic
Kernel, Sigmoid Kernel, and Silverman Kernel, defined as
follows, respectively:

Kh(s1, s2) ∝ exp(−1

2
h−2d(s1, s2)2), (3)

Kh(s1, s2) ∝ 1

exp(d(s1, s2)/h) + 2 + exp(−d(s1, s2)/h)
, (4)

Kh(s1, s2) ∝ 1

exp(d(s1, s2)/h) + exp(−d(s1, s2)/h)
, (5)

Kh(s1, s2) ∝ exp(−|d(s1, s2)/h|√
2

) · sin(
|d(s1, s2)/h|√

2
+
π

4
). (6)

We adopt a type of locally constant kernel regression [21]
to aggregate multiple local matrices. For simplicity, we use
the same smoothing kernel and the same bandwidth for base
intensity η and coefficient α. That is, for each user-item pair

s = (u, i), the occurrences of user u’s interactions with item
i are modeled as a local low-rank Hawkes process with the
following intensity:

λs(t)=

q∑
τ=1

Kh(sτ , s)∑q
k=1Kh(sk, s)

[Hsτ
s +Asτ

s

∑
tsj∈T

s
t

κσ(t−tsj)], (7)

where Hsτ
s and Asτ

s are the s-th entry of the τ -th base inten-
sity matrix Hsτ and self-exciting matrix Asτ , τ = 1, 2, ..., q,
respectively. Note that we have matrix index s = (u, i).
Since the users and the items in each matrix can be grouped
into a limited number of sets with similar types, we assume
that Hsτ and Asτ have low-rank structures. This means that
the nuclear norms of the parameter matrices, ‖Hsτ ‖∗ and
‖Asτ ‖∗, are small. Therefore, the mapping parameter matrices
H and A in eq. (2) have local low-rank structures, and the
local low-rank Hawkes process in eq. (7) is actually based
on the weighted summation of q low-rank Hawkes processes
in eq. (2). Specifically, our local low-rank Hawkes model is
equivalent to the low-rank Hawkes model [3] when the number
of anchor points is equal to one, i.e., q = 1.

To simplify the notation, we denote by K
(a,b)
h the ma-

trix whose (i, j)-entry is Kh((a, b), (i, j)). Given a series
of anchor points sτ ∈ 1, ..., q, let

∑q
k=1Kh(sk, s) = Cs,

the denominator of which is the summation of the kernel
weights and actually a constant for each (u, i) pair. We further
create three block matrices H ′, K ′, and A′ ∈ Rm×(q∗n)

by concatenating a set of matrices Hsτ , Ksτ
h , and Asτ as

follows:

H ′ = [Hs1 , ...,Hsq ],

A′ = [As1 , ...,Asq ],

K′ = [Ks1
h , ...,K

sq
h ]. (8)

Let M{u, i} be a vector extracted from a matrix M for each
(u, i) pair, i.e., [M s1(u, i), ...,M sq (u, i)], where M can be
any of the three matrices H ′, A′, and K ′.

C. Objective Function

Based on the survival analysis theory [20], the likelihood of
observing a sequence of events T = {ti}ni=1 is

∏
ti∈T λ(ti) ·

exp(−
∫ T

0
λ(τ)d(τ)), where T is the total observation time.

Specifically, let T u,i be the set of interaction events between
entities u and i. The log-likelihood of observing each sequence
T u,i is:

L(T u,i |X) =
∑

t
u,i
j ∈T

u,i

log(X>u,iΦ
u,i
j )−X>u,iΨ

u,i, (9)



where:

Xu,i =(H ′{u, i},A′{u, i})>,
Φu,ij =C−1

u,i (K
′{u, i} · 1,

K′{u, i} ·
∑

t
u,i
k
<t
u,i
j

κσ(tu,ij − t
u,i
k ))>,

Ψu,i =C−1
u,i (K

′{u, i} · T,

K′{u, i} ·
∑

t
u,i
j ∈T

u,i

∫ T

t
u,i
j

κσ(t− tu,ij )dt)>. (10)

As a result, the log-likelihood of observing all user-item
interaction sequences O = {T u,i}u,i is a summation of terms
by L(O) =

∑
T u,i∈O L(T u,i). We can obtain the model

parameters X by minimizing the following objective function:

OPT = min
X
− 1

|O|
∑
T u,i∈O

L(T u,i |X) + h(X)

s.t. X ≥ 0, (11)

where h(X) = λ‖H ′‖∗+β‖A′‖∗, X = [H ′;A′], and λ and
β control the trade-off between the constrains. The nuclear
norm ‖·‖∗ is a summation of all singular values and it can
be used as a convex surrogate for the matrix rank [22]. Thus,
minimizing ‖H ′‖∗ and ‖A′‖∗ ensures each Hsτ and Asτ to
be low-rank. After obtaining X , we can use eq. (7) to compute
the intensity.

IV. PARAMETER ESTIMATION

We propose to learn the parameters using an efficient
framework. We first introduce the kernel function calculation.
To learn the parameters that optimize the objective in eq. (11),
we then introduce the latest Primal Averaging Conditional
Gradient (PA-CndG) algorithm [23] based on the Proximal
Gradient (PG) method [24], [25].

A. Kernel Calculation and Anchor Point Selection

A general kernel function is denote by Kh(s1, s2), where
s1, s2 ∈ [m] × [n]. Similar to [14], we assume a product
form Kh((a1, b1), (a2, b2)) = Kh1(a1, a2)·K ′h2

(b1, b2), where
those two kernels are on the spaces [m] and [n], respectively.
As we have the log function in eq. (9), we use the Gaussian
kernel in eq. (3) for both K and K ′, as it does not give
zero values. Then the kernel function matrix for one anchor
point can be expressed as Ksτ

h = Kaτ
h1
· Kbτ

h2
∈ [m] × [n],

where τ = 1, ..., q. The distance d in eq. (3) can be defined
using affiliated information describing the similarities between
the rows (users) or the columns (items). For example, using
DNN models we can extract features from reviews for items
[26]. If no such information is available, we can compute d
based on the partially observed user-item interaction matrix.
Specifically, we may convert the user-item interactions into a
matrix X , where each entry indicates the frequency of item
consumptions of a user during a time period. We can then
compute the distances between row vectors (for users) and
between column vectors (for items) using standard distance
measures such as cosine similarity. When the matrix X is very
sparse, we follow conventions as reported in [14] to factorize

the matrix using standard incomplete SVD [27] and then
compute the cosine distances between the rows and columns
of factor matrices.

For choosing anchor points s1, ..., sq , we sample them uni-
formly from the observed (u, i) entries. It is worth mentioning
that the anchor points can be selected by other strategies such
as pre-cluster processing, that is clustering the (u, i) pairs
into q clusters and then selecting one anchor point from each
cluster. There are several clustering methods such as K-means
and spectral clustering. For K-means, the input features for
each (u, i) pair could be the concatenated user and item latent
features obtained by SVD. For spectral clustering, the input
similarity matrix is the one calculated by smoothing kernels. In
our experiments, we found no significant difference between
those methods empirically. As clustering is computationally
expensive, we randomly select anchor points from the ob-
served matrix in our algorithm.

B. Approximate Function and Gradient Update

Directly solving the objective in eq. (11) is difficult be-
cause the nonnegative constraints are coupled together with
the non-smooth nuclear norm. To tackle the difficulties, we
approximate eq. (11) by adopting a penalty method [3], [5].
Given ρ > 0, we introduce an auxiliary variable Z = [Z1;Z2]
with the squared Frobenius norm, which leads to the new
formulation in eq. (12):

ÔPT = min
X,Z
− 1

|O|
∑
T u,i∈O

L(T u,i |X)+h(Z)+g(X,Z)

s.t. X ≥ 0, (12)

where g(X,Z) = ρ‖H ′ − Z1‖2F + ρ‖A′ − Z2‖2F . In this
formulation of eq. (12), the nuclear norm regularization terms
and the non-negativity constraints are handled separately. The
approximate objective can always be the upper bound of
the real objective given the bounded ρ [3]. For notational
simplicity, we set:

f(X,Z) = − 1

|O|
∑
T u,i∈O

L(T u,i |X) + g(X,Z), (13)

and the objective function becomes:

ÔPT = F (X,Z) = f(X,Z) + h(Z)

s.t. X ≥ 0, (14)

Note that f(·) is convex and Lipschitz continuous gradient
(L-smooth), and h(·) is convex.

As shown in algorithm 1, we apply gradient update for
model parameters X and Z in each iteration and keep three
interdependent sequences Uk, Xk, and Y k based on the
schema in [25]. Specifically, we directly compute the proximal
operator for X with the constraint in algorithm 1 as:

Uk
1 =arg min

Uk1≥0
{ 1

2ξk
‖Uk

1−(Y k−1
1 −ξk∇1f(Y k−1

1 ,Y k−1
2 ))‖2}

= (Y k−1
1 − ξk∇1(f(Y k−1

1 ,Y k−1
2 )))+. (15)

Note that h(Z) only has variable Z, so h(·) = 0, which
means that it is just normal Projected Gradient Descent (PGD).



Besides, (·)+ in Algorithm 1 sets the negative coordinates to
zero.

For Z, we do not directly calculate using eq. (15). Instead,
we use a local linear expansion to approximate it, which is
known as conditional gradient. Specifically, it differs from tra-
ditional conditional gradient method in the way that the search
direction ∇2f(Y k−1

1 ,Y k−1
2 ) is defined. It can be viewed as a

variant of Nesterov’s method [25] and is obtained by replacing
the prox-mapping with a simpler linear expansion:

Uk
2 = argmin

Z
{〈∇2f(Y k−1

1 ,Y k−1
2 ),Z〉+ h(Z). (16)

Specifically, this part can be solved by first calculating the top
singular vector pairs of −∇2f(Y k−1

1 ,Y k−1
2 ) and then using

a line search to produce a scaling factor [3], [28].

Algorithm 1: Local Low-Rank Hawkes

Input: All the training events O = {T u,i}u,i; learning
rate ξk; parameters ρ, λ, β; number of anchor
points q; kernel function K(·) of widths h1, h2;
step size γk ∈ [0, 1];

Output: X = [H ′; A′], which is the block matrix
for τ = 1→ q do

(aτ , bτ ) := a random selected (u, i) pair;
for i = 1→ m do

Kaτ
h1

(i) := exp(− 1
2h
−2d(aτ , i)

2);
end
for j = 1→ n do

Kbτ
h2

(i) := exp(− 1
2h
−2d(bτ , j)

2);
end

end
Choose to initialize U0

1;
Set X0 = Z0 = U0

1 = U0
2;

for k ← 1 to MaxIter do
Set Y k−1

1 = (1− γk)Xk−1 + γkU
k−1
1 ;

Set Y k−1
2 = (1− γk)Zk−1 + γkU

k−1
2 ;

Compute the proximal operator for X:
Uk

1 = (Y k−1
1 − ξk∇1(f(Y k−1

1 ,Y k−1
2 )))+;

Use a local linear expansion of f for Z:
Uk

2 = argminZ{〈∇2f(Y k−1
1 ,Y k−1

2 ),Z〉+ h(Z)};
Set Xk = (1− γk)Xk−1 + γkU

k
1 ;

Set Zk = (1− γk)Zk−1 + γkU
k
2 ;

end

C. Convergence Analysis

For PGD method, the algorithm achieves the well-known
optimal rate O(1/k), i.e., a rate of O(1/ε) given learning
rate ξk ≤ 1/L, and for PA-CndG method, it also reaches
O(1/k) given the step size policy (1): γk = 2

k+1 or (2):
γk = arg minγ∈[0,1] f((1 − γ)Xk−1 + γUk

1 , (1 − γ)Zk−1 +

γUk
2) [23]. Generally, the algorithm should still reach the opti-

mal rate O(1/k) by properly choosing the step size parameter
and the learning rate. We have the convergence results for
algorithm 1 in theorem 1, followed by the proof.

Theorem 1. Let {Zk}, {Xk}, {Uk
1}, and {Uk

2} be the
sequences generated by algorithm 1 with step size γk = 2

k+1
and learning rate ξk ≤ 1/L. Then we have:

F (Xk,Zk)− F ∗ ≤ 5LD2
max

k + 1
, (17)

where L is the Lipschitz constant of ∇f(x, z).

Proof. Define:

lf (x, z; y1, y2) = f(x, z) + 〈∇1f(x, z), y1 − x〉
+ 〈∇2f(x, z), y2 − z〉. (18)

For X,Z ∈ Ω, f is Lipschitz continuous gradient and:

f(y1, y2) ≤ lf (x, z; y1, y2) +
L

2
‖y1 − x‖2 +

L

2
‖y2 − z‖2. (19)

First note that:

Xk − Y k−1
1 = γk(Uk

1 −Uk−1
1 )

Zk − Y k−1
2 = γk(Uk

2 −Uk−1
2 ). (20)

Hence, using the definitions of Xk and Zk in algorithm 1,
we have:

f(Xk,Zk) ≤ lf (Y k−1
1 ,Y k−1

2 ;Xk,Zk)

+
L

2
‖Xk − Y k−1

1 ‖2 +
L

2
‖Zk − Y k−1

2 ‖2

=(1− γk)lf (Y k−1
1 ,Y k−1

2 ;Xk−1,Zk−1)

+ γklf (Y k−1
1 ,Y k−1

2 ;Uk
1 ,U

k
2)

+
L

2
γ2
k‖Uk

1 −Uk−1
1 ‖2 +

L

2
γ2
k‖Uk

2 −Uk−1
2 ‖2. (21)

For simplicity, define the Bregman divergence D(x, x′) =
‖x−x′‖2. From eq. (15), we know it is actually PGD method
with f(·) as Lipschitz continuous gradient and constrained to
convex set Ω. Based on the definition of the convex hull and
the property of PGD, we have the following property:

〈U1 − Y k
1 , (Y

k−1
1 −ξk∇1f(Y k−1

1 ,Y k−1
2 ))− Y k

1〉 ≤ 0,

∀ U1 ∈ Ω. (22)

Using eq. (22) and the definition of Uk
2 in algorithm 1, we

have:

〈∇1f(Y k−1
1 ,Y k−1

2 ),Y k
1−U∗1〉≤

− 1

2ξk
D(Y k

1 ,Y
k−1
1 )+

1

2ξk
[D(U∗1,Y

k−1
1 )−D(U∗1,Y

k
1)] (23)

and

〈∇2f(Y k−1
1 ,Y k−1

2 ),Uk
2〉+ h(Uk

2)

≤ 〈∇2f(Y k−1
1 ,Y k−1

2 ),U∗2〉+ h(U∗2). (24)



Then noting that D(x, x′) ≥ 0 and using the convexity of
f(·) and h(·) together with the definition of Zk in algorithm
1 and eqs. (21), (23) and (24), we end up with:

F (Xk,Zk) ≤ (1− γk)f(Xk−1,Zk−1)

+ γklf (Y k−1
1 ,Y k−1

2 ;U∗1,U
∗
2)

+
γk
2ξk

[D(U∗1,Y
k−1
1 )−D(U∗1,Y

k
1)]

+ γk(h(U∗2)− h(Uk
2)) + h(Zk)

+
L

2
γ2
kD(Uk

1 ,U
k−1
1 ) +

L

2
γ2
kD(Uk

2 ,U
k−1
2 )

≤(1− γk)f(Xk−1,Zk−1) + γkf(U∗1,U
∗
2)

+
L

2
γk[D(U∗1,Y

k−1
1 )−D(U∗1,Y

k
1)]

+ γk(h(U∗2)− h(Uk
2)) + h(Zk)

+
L

2
γ2
kD(Uk

1 ,U
k−1
1 ) +

L

2
γ2
kD(Uk

2 ,U
k−1
2 )

≤(1− γk)F (Xk−1,Zk−1) + γkF (U∗1,U
∗
2)

+
L

2
γk[D(U∗1,Y

k−1
1 )−D(U∗1,Y

k
1)]

− γkh(Uk
2) + h(Zk)− (1− γk)h(Zk−1)

+
L

2
γ2
kD(Uk

1 ,U
k−1
1 ) +

L

2
γ2
kD(Uk

2 ,U
k−1
2 )

≤(1− γk)F (Xk−1,Zk−1) + γkF (U∗1,U
∗
2)

+
L

2
γk[D(U∗1,Y

k−1
1 )−D(U∗1,Y

k
1)]

+
L

2
γ2
kD(Uk

1 ,U
k−1
1 ) +

L

2
γ2
kD(Uk

2 ,U
k−1
2 ). (25)

Subtracting F (U∗1,U
∗
2) from both sides of the above inequal-

ity, we have:

F (Xk,Zk)− F (U∗1,U
∗
2) ≤

(1− γk)(F (Xk−1,Zk−1)− F (U∗1,U
∗
2))

+
L

2
γk[D(U∗1,Y

k−1
1 )−D(U∗1,Y

k
1)]

+
L

2
γ2
kD(Uk

1 ,U
k−1
1 ) +

L

2
γ2
kD(Uk

2 ,U
k−1
2 ). (26)

In view of Lemma 1 of [23] and the definition of γk and Γk,
it is easy to verify that γ2

k

Γk
= 2k

k+1 ≤ 2 and γi
Γi

= i ≤ k, which
implies that:

F (Xk,Zk)− F (U∗1,U
∗
2) ≤

Γk(1− γ1)(F (X0,Z0)− F (U∗1,U
∗
2))

+
ΓkL

2

k∑
i=1

γi
Γi

[D(U∗1,Y
i−1
1 )−D(U∗1,Y

i
1)]

+
ΓkL

2

k∑
i=1

γ2
i

Γi
[D(U i

1,U
i−1
1 ) + D(U i

2,U
i−1
2 )]. (27)

Let Dmax = maxx,y∈Ω‖x − y‖ and note that D(x, x′) ≥ 0.
We finally have:

F (Xk,Zk)− F ∗ ≤ L

k(k + 1)
{kD(U∗1,Y

0
1)

+ 2

k∑
i=1

[D(U i
1,U

i−1
1 ) + D(U i

2,U
i−1
2 )]} ≤ 5LD2

max

k + 1
. (28)

Therefore, the algorithm still achieves the optimal rate
O(1/k), i.e., a rate of O(1/ε).

V. THE PARALLEL ALGORITHM

The above algorithm may be computational expensive when
the number of anchor points q increases to an extremely large
value. We further speed up the algorithm to accommodate the
need of a large number of anchor points q to fit big industry
data. To this end, we first rewrite the optimal function in the
form of eq. (31). We show in theorem 2 that when λτ and βτ

are properly chosen, the two formulations will result in the
same optimum. As all the variables {Xsτ = [Hsτ ; Asτ ]}qτ=1

are independent, we develop the parallel method in algorithm 2
that optimizes each block matrix {Xsτ }qτ=1 separately. Hence,
it allows us to deal with the objective function in parallel and
makes the algorithm more efficient for big data.

Denote the log-likelihood of observing sequence T u,i map-
ping to a specific anchor point sτ = (aτ , bτ ) as:

Lsτ (T u,i |Xsτ ) =

1

q
{
∑

t
u,i
j ∈T

u,i

log(X(sτ )>u,iΦ(sτ )u,ij )−X(sτ )>u,iΨ(sτ )u,i}, (29)

where:

X(sτ )u,i =(Hsτ (u, i),Asτ (u, i))>,

Φ(sτ )u,ij =q(1,
∑

t
u,i
k
<t
u,i
j

κσ(tu,ij − t
u,i
k ))>·Ksτ

h (u, i)/Cu,i,

Ψ(sτ )u,i =q(T,
∑

t
u,i
j ∈T

u,i

∫ T

t
u,i
j

κσ(t− tu,ij )dt)>·Ksτ
h (u, i)/Cu,i. (30)

Then we define the parallel objective function as:

OPTp = min
Xsτ ,Zsτ

− 1

|O|

q∑
τ=1

{
∑
T u,i∈O

Lsτ (T u,i|Xsτ )+hsτ (Zsτ )}

s.t. X ≥ 0, (31)

where hsτ (Zsτ ) = λτ‖Hsτ ‖∗ + βτ‖Asτ ‖∗.
Theorem 2. With the condition that λτ and βτ for τ = 1, ..., q
satisfy eq. (32), the optimal value OPTp in eq. (31) coincides
with the global optimal value OPT in eq. (14).

λ‖H ′‖∗ + β‖A′‖∗ ≤
q∑
τ=1

(λτ‖Hsτ ‖∗ + βτ‖Asτ ‖∗). (32)

Proof. For a real convex function ϕ(·), a set of numbers
x1, x2, ..., xn, and positive weights αi, Jensen’s inequality can
be stated as:

ϕ(

∑
αixi
αi

) ≤
∑
αiϕ(xi)∑
αi

. (33)

The equality holds if and only if x1 = x2 = ... = xn or ϕ(·)
is linear. Specifically, eq. (33) becomes:

ϕ(

∑
xi
n

) ≤
∑
ϕ(xi)

n
(34)

if the weighs αi are equal.



Algorithm 2: Local Low-Rank Hawkes Parallel

Input: All the training events O = {T u,i}u,i; learning
rate ξk; parameters ρ, λ, β; number of anchor
points q; kernel function K(·) of widths h1, h2;
step size γk ∈ [0, 1];

Output: {Xsτ = [Hsτ ; Asτ ]}qτ=1, which are the set of
local parameter matrices:

for τ = 1, ..., q in parallel do
(aτ , bτ ) := a random selected (u, i) pair;
for i = 1→ m do

Kaτ
h1

(i) := exp(− 1
2h
−2d(aτ , i)

2);
end
for j = 1→ n do

Kbτ
h2

(i) := exp(− 1
2h
−2d(bτ , j)

2);
end
Choose to initialize U0

1;
Set X0 = Z0 = U0

1 = U0
2;

for k ← 1 to MaxIter do
Set Y k−1

1 = (1− γk)Xk−1 + γkU
k−1
1 ;

Set Y k−1
2 = (1− γk)Zk−1 + γkU

k−1
2 ;

Compute the proximal operator for X:
Uk

1 = (Y k−1
1 − ξk∇1(fsτ (Y k−1

1 ,Y k−1
2 )))+;

Use a local linear expansion of f for Z:
Uk

2 =
argminZ{〈∇2fsτ (Y k−1

1 ,Y k−1
2 ),Z〉+hsτ (Z)};

Set Xk = (1− γk)Xk−1 + γkU
k
1 ;

Set Zk = (1− γk)Zk−1 + γkU
k
2 ;

end
end

As −log(·) is convex, we rewrite eq. (9) based on eq. (34)
as:

− L(T u,i | {Xsτ }qτ=1) =

−
∑

t
u,i
j ∈T

u,i

log(

q∑
τ=1

X(sτ )>u,iΦ(sτ )u,ij /q)+

q∑
τ=1

X(sτ )>u,iΨ(sτ )u,i/q,

≤−
q∑
τ=1

{
∑

t
u,i
j ∈T

u,i

log(X(sτ )>u,iΦ(sτ )u,ij )−X(sτ )>u,iΨ(sτ )u,i}/q

= −
q∑
τ=1

Lsτ (T u,i |Xsτ ). (35)

Given eq. (32), we have:

h(Z) = λ‖H ′‖∗ + β‖A′‖∗

≤
q∑
τ=1

(λτ‖Hsτ ‖∗ + βτ‖Asτ ‖∗) =

q∑
τ=1

hsτ (Zsτ ). (36)

Therefore, plugging eqs. (35) and (36) into the previous
objective function in eq. (11), we have OPT ≤ OPTp and
readily arrive at the theorem.

Therefore, we can optimize the parallel objective function
in eq. (31) separately by using the parallel algorithm to
approximate the parameter estimation. As the form of the

objective function is the same as the global one, we can still
use the global updating approach. The details are described
in algorithm 2. By assuming q machines for computing, the
algorithm can run in parallel to estimate the q local model
parameters. In the end, they synchronize to obtain the final
results. The parallel algorithm should be q times faster without
considering the communication cost.

VI. EXPERIMENTS

In this section, we present the results of the experiments.

A. Datasets and Evaluation Criteria

We evaluate our model on the three real-world datasets:
IPTV dataset [11] records the viewing behaviors of 7100 users
on 436 TV programs, e.g., what and when they watch, from
January to November 2012. It contains 4726 (u, i) pairs with
nearly 2.4M events and 1420 movie features such as genres.
These features are only used for Coevolve baseline. Yelp1 is
available from Yelp dataset challenge. We select users with at
least 100 posts, and it contains 35k reviews for 17k businesses
by 100 users in 11 years. Reddit2 dataset contains a random
selected 1000 users, 1403 groups, and 10k discussions events
in January 2014.

We can evaluate the performance of our Hawkes model on
two tasks:

Item Relevance: We report Mean Average Rank (MAR) [5]
of all the testing items. For a specific user u, we compute
the survival S(u,i)(t) = exp(−

∫ t
tu,in

λ(u,i)(τ)d(τ)) for all the
items at every testing time t. According to the survival, we
rank all the items in ascending order, and the real testing item
should rank one ideally. Therefore, a smaller value represents
better predictive performance.

Time Prediction: We report the Mean Absolute Error
(MAE) [3], [5] between the predicted times and the ground
truth. We compute the predicted time by calculating the density
as f(t) = λ(u,i)(t)S(u,i)(t), and then use the expectation
to predict the next event. Furthermore, we give the relative
percentage of the prediction error (Err %).

B. Baseline Methods and Parameter Settings

Poisson process is a relaxation of Hawkes process with
no triggering kernel capturing temporal dependencies. It only
contains a base intensity η, which is a constant. The Poisson
process is a strong baseline in many cases, as most popular
items usually have large base intensities.

PoissonTensor uses Poisson regression other than RMSE as
the loss function to fit the number of events, which actually can
be considered as the intensity in each discretized time slot [29].
Because the missing values are not random, simulating the
values with Poisson distribution is more reasonable than with
Gaussian. Once we get the values, there are two ways to
simulate the intensity of test data. One is using the intensity
that we have got only in the last time interval, and the other

1https://www.yelp.com/dataset/challenge
2https://dynamics.cs.washington.edu/data.html



is using the average intensity of all the training time intervals.
We report the best performance of these two choices.

LowRankHawkes is a Hawkes process based model [3] that
can be seen as a relaxation of our model with only one anchor
point. It assumes that all the (u, i) pairs are independent so
there is no user-item interactions between pairs.

Coevolve is a coevolutionary latent feature process [5]
which can be seen as a squared Hawkes process adding a
base intensity. It uses user and item features as well as the
interaction features between users and items, such as review
features, to simulate the intensity of each (u, i) pair. In our
experiments, we only use the item feature. If no features are
provided, the model reduces to the Poisson process.

Parameter Settings In the experiments, T is the length of
the total time, and p = 0.76 is the proportion where we split
the data. Specifically, we use the events before time T · p as
the training data, and the rest of them as testing data. We do
experiments on several types of kernels, and find that these do
not affect the performance much. We use the Gaussian kernel
with h1 = h2 = 0.8 and report the averaged results on the
two tasks above.

C. Results

We show the results of our method using the global algo-
rithm and other baseline methods in Fig. 1, Fig. 2, and Fig. 3
for IPTV, Yelp, and Reddit data, respectively.

Generally, our model outperforms most other baseline meth-
ods in item prediction and returning time prediction. The
main reason is that each (u, i) pair’s intensity is simulated
with its own sequence mapping to a total of q local models
in our model. Coevolve relies on the auxiliary features.
LowRankHawkes treats each (u, i) pair’s process indepen-
dently. Poisson and PoissonTensor simulate events without
the history, and thus are lack of prediction power.

For IPTV and Reddit data, the exception occurs at the
time prediction of Coevolve, because the auxiliary feature
information is added to this model. The Coevolve method
uses a weighted summation of all the events happened be-
fore the current event to simulate one (u, i) pair’s intensity
λu,i(t). Therefore, the returning-time prediction is good since
a large number of events are used to simulate the intensity
function and a huge amount of auxiliary feature information
is incorporated. However, the item rank prediction becomes
worse [5] because the individual preferences are influenced
by the general preference. Meanwhile, we can see that the
Hawkes process based models, such as our model, Coevolve,
and LowRankHawkes, get better performances when there
are sufficient history events (with nearly 400 events per (u, i)
pairs) in comparison with the Poisson related models.

For Yelp data, as each (u, i) pair only has fewer than
3 events in average, the time prediction is similar among
LowRankHawkes and Poisson, which means that the history
is not such an important factor. In this time sparsity case,
factorization model PoissonTensor gets better results than
point process based models. Even adding some auxiliary fea-
tures, the Coevolve model achieves comparable performance,

TABLE I
AVERAGE PERFORMANCE WITH DIFFERENT NUMBERS OF

ANCHOR POINTS BY THE GLOBAL ALGORITHMS ON IPTV, YELP,
AND REDDIT DATASETS.

Datasets Metrics Anchor Points
1 2 5 10 15

IPTV
MAR 5.175 2.934 1.705 1.667 1.666
MAE 822.1 716.3 620.1 449.0 383.0
Err % 12.67 10.82 9.15 6.44 5.46

Yelp
MAR 116.0 106.6 94.63 95.74 95.09
MAE 845.7 805.9 520.7 581.7 591.0
Err % 23.71 22.74 14.98 17.34 17.62

Reddit
MAR 49.14 11.50 6.177 6.129 6.062
MAE 8476 8117 6909 6138 5508
Err % 21.50 20.60 17.64 15.88 14.41

our model performs the best without any features. As more
information is used to simulate the Hawkes process for each
(u, i) pair, our model integrates some interaction influences
from similar groups. In other words, our model performs better
on sequences without sufficient events.

It is worth mentioning that our method achieves good
performance on item prediction as it integrates similarity mea-
surements using kernels with the Hawkes process. The kernel
measures the similarity between different (u, i) pairs and some
anchor points are selected from the user-item dimension. As
our model assumes that all the (u, i) pairs can be clustered
into several groups, it is more efficient than the multivariate
Hawkes process, especially in modeling large-scale interaction
events.

1) Effect of Anchor points: We show the results of kernel
smoothing with different numbers of anchor points in table I
for IPTV, Yelp, and Reddit datasets. The results come from
the global algorithm.

For IPTV and Reddit data, both item prediction and
returning-time prediction are improved when the number of
anchor points increases. The results also indicate the bot-
tleneck of the performance given enough anchor points. As
the (u, i) pairs are sparse in the space, i.e., we only have
4726 (u, i) pairs on a 7100 × 436 matrix for IPTV data, it
is not appropriate to set too many anchor points. Therefore,
the number of anchor points should depend on the sparsity of
the pairs on user-item dimension. It is also worth mentioning
that just a few anchor points, e.g., 5, can render pretty good
results.

For Yelp data, as the dataset only has 100 users, it reaches
the best performance when the number of anchor points is
in the range of (5 ∼ 10). However, when the number of
anchor points further increases, bias may be introduced as
some anchor points are similar, so it actually calculates one
type of local neighbors repeatedly in eq. (7), which finally
lowers the prediction performance. Therefore, selecting anchor
points should also depend on the user dimension and the item
dimension rather than the pairs’ sparsity only.

2) Comparison of Global and Parallel: We also compare
the results of the global and parallel algorithms and present
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Fig. 1. Prediction accuracy on IPTV data
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Fig. 3. Prediction accuracy on Reddit data

the results in table II. It is obvious that the parallel algorithm
performs better than the global algorithm and achieves similar
results with a smaller number of anchor points. The reason
is that the parallel algorithm is more flexible in controlling
the nuclear norm for parameter matrices in comparison with
the global algorithm, which only assumes the combination of
a number of block matrices low-rank. Specifically, for the
global algorithm, only three parameters (λ,β,ρ) are used to
control the nuclear norm of model parameter X . For the
parallel algorithm, there are up to 3 · q parameters in total
and each tuple (λτ ,βτ ,ρτ ) can be used to control the rank

for each local model. Therefore, the parallel algorithm is
more compatible with the local low-rank assumption when
dealing with the nuclear norm. In the experiments, however,
we find that it only slightly improves the results, so we choose
the same parameters for all local models with the nuclear
norm. Meanwhile, we can see that the prediction accuracy
will converge as the number of anchor points grows.

VII. CONCLUSIONS

In this paper, we present a novel framework that integrates
the kernel smoothing and the Hawkes process to model the
temporal events of user-item interactions. We assume that



TABLE II
AVERAGE PERFORMANCE WITH DIFFERENT NUMBERS OF

ANCHOR POINTS BY GLOBAL AND PARALLEL ALGORITHMS ON
IPTV DATASET.

Metrics Anchor Points
1 2 5 10 15

Global
MAR 5.175 2.934 1.705 1.667 1.666
MAE 822.1 716.3 620.1 449.0 383.0
Err % 12.67 10.82 9.15 6.44 5.46

Parallel
MAR 5.136 2.865 1.684 1.678 1.676
MAE 822.2 713.7 486.3 379.0 362.7
Err % 12.33 10.62 7.06 5.40 5.16

the intensity parameter matrix is locally low-rank. With non-
parametric kernel smoothing, each user-item pair can be
simulated by a series of local matrix mappings. We design
an efficient convex optimization algorithm to estimate model
parameters and present a parallel algorithm to further increase
the computation efficiency. Extensive experiments on real-
world datasets demonstrate the performance improvements of
our model in comparison with the state of the art. Our model
can be applied to other 2D aggregated Hawkes processes, such
as temporal user interactions in social networks, and extended
to n-dimensional aggregated Hawkes processes, as long as
these dimensions satisfy the local low-rank assumption. Fur-
ther work includes extending to other application areas and
integrating the framework with certain deep neural network
structures.
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